Extra Example 5.1

In the diagram, DF is a midsegment of △ ABC. Find BC. 24

CHAPTER REVIEW

@HomeTutor classzone.com

 Multi-Language Glossan Vocabulary practice

REVIEW KEY VOCABULARY

For a list of postulates and theorems, see pp. 926-931.

distance from the

any of the vertices

circumcenter to

EXAMPLES

1, 4, and 5

for Exs. 6-8

on pp. 295, 297

- · midsegment of a triangle, p. 295
- · coordinate proof, p. 296
- perpendicular bisector, p. 303
- equidistant, p. 303
- · concurrent, p. 305
- point of concurrency, p. 305
- circumcenter, p. 306

VOCABULARY EXERCISES

- 1. Copy and complete: A ? is a segment, ray, line, or plane that is perpendicular to a segment at its midpoint. perpendicular bisector
- 2. WRITING Explain how to draw a circle that is circumscribed about a triangle What is the center of the circle called? Describe its radius.

In Exercises 3-5, match the term with the correct definition.

- 3. Incenter B
- A. The point of concurrency of the medians of a triangle
- 4. Centroid A
- B. The point of concurrency of the angle bisectors of a triangle

· Incenter, p. 312

· centroid, p. 319

• orthocenter, p. 321

• indirect proof, p. 337

· median of a triangle, p. 319

· altitude of a triangle, p. 320

- 5. Orthocenter C
- C. The point of concurrency of the altitudes of a triangle

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 5.

Midsegment Theorem and Coordinate Proof

pp. 295-301

EXAMPLE

In the diagram, \overline{DE} is a midsegment of \triangle ABC. Find AC.

By the Midsegment Theorem, $DE = \frac{1}{2}AC$.

So, AC = 2DE = 2(51) = 102.

EXERCISES

Use the diagram above where \overline{DF} and \overline{EF} are midsegments of $\triangle ABC$.

- **6.** If AB = 72, find EF. **36**
- 7. If DF = 45, find EC. 45
- 8. Graph $\triangle PQR$, with vertices P(2a, 2b), Q(2a, 0), and O(0, 0). Find the coordinates of midpoint S of \overline{PQ} and midpoint T of \overline{QO} . Show $\overline{ST} \parallel \overline{PO}$.

S(2a, b), T(a, 0); slope of \overline{ST} is $\frac{b}{a}$ and slope of \overline{OP} is $\frac{b}{a}$; see margin for art.

Chapter 5 Relationships within Triangles

5.2 Use Perpendicular Bisectors

classzone.com Chapter Review Practice

pp. 303-309

@HomeTutor

EXAMPLE

Use the diagram at the right to find XZ.

 \overrightarrow{WZ} is the perpendicular bisector of \overrightarrow{XY} .

By the Perpendicular Bisector Theorem, ZX = ZY.

$$x = 4$$

Solve for x.

So,
$$XZ = 5x - 5 = 5(4) - 5 = 15$$
.

EXERCISES

In the diagram, \overrightarrow{BD} is the perpendicular bisector of \overrightarrow{AC} .

- 9. What segment lengths are equal? BA and BC, DA and DC
- 10. What is the value of x? 5
- 11. Find AB. 25

24/

5.3 Use Angle Bisectors of Triangles

pp. 310-316

EXAMPLE

In the diagram, N is the incenter of $\triangle XYZ$. Find NL.

Use the Pythagorean Theorem to find NM in △NMY.

Pythagorean Theorem Substitute known values.

 $900 = NM^2 + 576$

Multiply.

 $324 = NM^2$

Subtract 576 from each side.

18 = NM

Take positive square root of each side. ▶ By the Concurrency of Angle Bisectors of a Triangle, the incenter N of $\triangle XYZ$ is equidistant from all three sides of $\triangle XYZ$. So, because NM = NL, NL = 18.

EXERCISES

on p. 312 br Exs. 12-13

Chapter Review 345

Extra Example 5.2

Uses the diagram to find RS. 29

Extra Example 5.3

In the diagram, P is the incenter of △ ABC. Find PD. 14

@HomeTutor classzone.com Chapter Review Practice

Extra Example 5.4

The vertices of $\triangle RST$ are R(1, 4), S(3, 8), and T(5, 0). Find the coordinates of the centroid, M. (3, 4)

Extra Example 5.5

A triangle has one side of length 13 and another of length 18. Describe the possible lengths of the third side. The length of the third side must be greater than 5 and less than 31.

18. Sample:

Use Medians and Altitudes

pp. 319-325

EXAMPLE

The vertices of $\triangle ABC$ are A(-6, 8), B(0, -4), and C(-12, 2). Find the coordinates of its centroid P.

Sketch $\triangle ABC$. Then find the midpoint M of \overline{BC} and sketch median AM.

$$M\left(\frac{-12+0}{2},\frac{2+(-4)}{2}\right)=M(-6,-1)$$

The centroid is two thirds of the distance from a vertex to the midpoint of the opposite side.

EXERCISES

Find the coordinates of the centroid D of $\triangle RST$.

EXAMPLES

on pp. 319-321

1, 2, and 3

for Exs. 14-18

14. R(-4, 0), S(2, 2), T(2, -2) (0, 0)

15. R(-6, 2), S(-2, 6), T(2, 4)

Point Q is the centroid of $\triangle XYZ$.

16. Find XQ. 6

17. Find XM. 3.5

▶ The coordinates of the centroid P are (-6, 8 - 6), or (-6, 2).

18. Draw an obtuse $\triangle ABC$. Draw its three altitudes. Then label its orthocenter D. See margin.

Use Inequalities in a Triangle

TEIS 25-27

pp. 328-334

EXAMPLE

A triangle has one side of length 9 and another of length 14. Describe the possible lengths of the third side.

Let x represent the length of the third side. Draw diagrams and use the Triangle Inequality Theorem to write inequalities involving x.

x + 9 > 14

x > 5

23 > x, or x < 23

▶ The length of the third side must be greater than 5 and less than 23.

Chapter 5 Relationships within Triangles

EXERCISES

pescribe the possible lengths of the third side of the triangle given the lengths of the other two sides.

19. 4 inches, 8 inches 4 in. < £ < 12 in.

 $\overline{RQ}, \overline{PR}, \overline{QP}; \angle P, \angle Q, \angle R$

20. 6 meters, 9 meters 3 m < L < 15 m List the sides and the angles in order from smallest to largest.

 \overline{LM} , \overline{MN} , \overline{LN} ; $\angle N$, $\angle L$, $\angle M$

21. 12 feet, 20 feet

8 ft < L < 32 ft

5.6 Inequalities in Two Triangles and Indirect Proof

pp. 335-341

EXAMPLE

How does the length of \overline{DG} compare to the length of \overline{FG} ?

Because 27° > 23°, $m \angle GEF > m \angle GED$. You are given that $\overline{DE} \cong \overline{FE}$ and you know that $\overline{EG} \cong \overline{EG}$. Two sides of $\triangle GEF$ are congruent to two sides of $\triangle GED$ and the included angle is larger so, by the Hinge Theorem, FG > DG.

EXERCISES

Copy and complete with <, >, or =.

25. m \(BAC \) m \(DAC >

26. LM ? KN =

- 27. Arrange statements A-D in correct order to write an indirect proof of the statement: If two lines intersect, then their intersection is exactly one point. C, B, A, D
 - **GIVEN** \triangleright Intersecting lines m and n
 - **PROVE** \triangleright The intersection of lines m and n is exactly one point.
 - A. But this contradicts Postulate 5, which states that through any two points there is exactly one line.
- **B.** Then there are two lines (m and n) through points P and Q.
- C. Assume that there are two points, P and Q, where m and n intersect.
- **D.** It is false that m and n can intersect in two points, so they must intersect in exactly one point.

Chapter Review 347

Extra Example 5.6

How does the length of CD compare to the length of CB? CD < CB

