Answers for 9.5 For use with pages 611–615

9.5 Skill Practice

- 1. parallel
- 2. It preserves length and angle measure.

3.

4.

5.

6.

7.

8.

Answers for 9.5 continued For use with pages 611–615

- **11.** yes
- **12.** yes
- **13.** $(x, y) \rightarrow (x + 5, y + 1)$ followed by a rotation of 180° about the origin.
- **14.** a reflection in the *y*-axis followed by a reflection in the *x*-axis
- **15.** △*A*"*B*"*C*"
- **16.** line k and line m
- **17.** Sample answer: $\overline{AA'}$, $\overline{AA''}$
- **18.** 5.2 in.
- **19.** yes; definition of reflection of a point over a line
- **20.** 110°
- **21**. 30°
- **22.** The line of reflection is not parallel to the direction of the translation; this is not a glide reflection.

23. P' Q' R' $\begin{bmatrix} -1 & -3 & -7 \\ 9 & 3 & 6 \end{bmatrix}$

24. P' Q' R' $\begin{bmatrix} -8 & -6 & -2 \\ -8 & -2 & -5 \end{bmatrix}$

- 25. Check students' work. Since the three transformations are isometries, the preimage and the final image are congruent because an isometry preserves length and angle measure.
- **26.** J''(-7, 5), K''(-2, 6), L''(-4, 7)

9.5 Problem Solving

- **27.** Sample answer: $(x, y) \rightarrow (x + 9, y)$, reflected over a horizontal line that separates the left and right prints
- 28. Sample answer: $(x, y) \rightarrow (x + 7.5, y)$, reflected over a horizontal line that separates the left and right prints
- **29.** C
- 30. glide reflection
- 31. reflection and translation
- 32. rotation and translation
- 33. translation and reflection
- **34.** Reflect the object across two parallel lines, and then reflect it across a third line perpendicular to the first two lines.
- **35.** Use the Rotation Theorem followed by the Reflection Theorem.

- **36.** A reflection followed by a rotation, a reflection followed by a translation, a rotation followed by a translation, a rotation followed by a reflection, or a translation followed by a reflection. Sample answer: Given a reflection in m mapping P to P'and Q to Q' followed by a rotation about R mapping P' to P''and Q' to Q''. Using the Reflection Theorem, PQ = P'Q'. Using the Rotation Theorem, P'Q' = P''Q''. Using the Transitive property of equality, PQ = P''Q''.
- **37. a.** Given: A reflection in ℓ maps \overline{JK} to $\overline{J'K'}$, a reflection in ℓ maps $\overline{J'K'}$ to $\overline{J''K''}$, $\ell \parallel m$, and the distance between ℓ and ℓ is ℓ . Using the definition of reflection, ℓ is the perpendicular bisector of ℓ and ℓ is the follows that ℓ and ℓ is perpendicular to ℓ and ℓ a

- **37. b.** Using the definition of reflection, the distance from K to ℓ is the same as the distance from ℓ to K' and the distance from K' to M is the same as the distance from M to M'. Since the distance from M to M' plus the distance from M' to M is M it follows that M' to M is M it follows that M' it M is M it follows that M' is M it follows that M' is M if M is M it follows that M' is M it follows that M' is M in M is M it follows that M' is M in M in M is M in M in
- **38. a-b.** Given: k and m intersect at point P. Q is any point not on k or m. Reflect Q over k to Q' followed by Q' reflected over m to Q''. Using the definition of reflection, k is the perpendicular bisector of QQ' at A and m is the perpendicular bisector of $\overline{Q'Q''}$ at B. It follows that $\overline{QA} \cong \overline{Q'A}$, $\overline{Q'B} \cong \overline{Q''B}$, and $\triangle QAP$, $\triangle Q'AP$, $\triangle Q'BP$, and $\triangle Q''BP$ are right triangles. Using the Reflexive Property of Segment Congruence, $\overline{AP} \cong \overline{AP}$ and $\overline{BP} \cong \overline{BP}$. Using the SAS Congruence Postulate, $\triangle QAP \cong \triangle Q'AP$ and $\triangle Q'BP \cong$ $\triangle O''BP$. Using corresponding parts of congruent triangles are congruent, $\overline{QP} \cong \overline{Q'P}$ and $Q'P \cong \overline{Q''P}$. Using the Transitive Property of Segment Congruence, $\overline{QP} \cong \overline{Q''P}$. Using corresponding parts of congruent triangles are congruent, $\angle QPA \cong \angle Q'PA$ and
- $\angle Q'PB \cong \angle Q''PB$. Using the Angle Addition Postulate, $m\angle QPA + m\angle Q'PA + m\angle Q'PB + m\angle Q'PB = m\angle QPQ''$ and $m\angle Q'PA + m\angle Q'PB = m\angle APB$. Using the definition of angle congruence and substitution, you get $m\angle Q'PA + m\angle Q'PA + m\angle Q'PA + m\angle Q'PB = m\angle QPQ''$ or $2(m\angle Q'PA + m\angle Q'PB) = m\angle QPQ''$. Using substitution it follows that $m\angle QPQ'' = 2m\angle APB$.
- 39. a. translation and a rotation
 - **b.** One transformation is not followed by the second. They are done simultaneously.
- **40. a.** A'(2, 0, 0), B'(2, 0, 3)
 - **b.** A''(6, 0, -1), B''(6, 0, 2)
- **41.** Sample answer: The conjecture is not always true. Consider a reflection of a point (a, b) in the x-axis followed by a reflection in the line y = x.
- 9.5 Mixed Review
- **42.** 34 **43.** $4\sqrt{5}$ **44.** $\sqrt{285}$

42.34 43.45 44. 5285

Answers for 9.5 continued For use with pages 611–615

