9.3 Skill Practice

- **1.** a line which acts like a mirror to reflect an image across the line
- 2. Multiply it by 2 because the distance from a point to the line of reflection is the same as the distance from the point's image to the line of reflection.

3. 1 y B' x

4. D' A' B' C' 1 x

Answers for 9.3 continued For use with pages 593–597

15.
$$A \ B \ C \ A' \ B' \ C' \ \begin{bmatrix} 1 & 4 & 3 \\ 2 & 2 & -2 \end{bmatrix}; \begin{bmatrix} -1 & -4 & -3 \\ 2 & 2 & -2 \end{bmatrix}$$

16.
$$A \ B \ C \ D$$

$$\begin{bmatrix} -2 \ 4 \ 3 \ 0 \\ 1 \ 1 \ -2 \ -1 \end{bmatrix}$$

$$A' \ B' \ C' \ D'$$

$$\begin{bmatrix} -2 \ 4 \ 3 \ 0 \\ -1 \ -1 \ 2 \ 1 \end{bmatrix}$$

17.
$$A \ B \ C$$
 $\begin{bmatrix} -4 \ 3 \ 2 \ -2 \ 1 \ -3 \end{bmatrix}$; $\begin{bmatrix} A' \ B' \ C' \ 4 \ -3 \ -2 \ 1 \ -3 \end{bmatrix}$

18. The reflection matrix should be

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ not } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -5 & 4 & 2 \\ 4 & 8 & -1 \end{bmatrix} =$$
$$\begin{bmatrix} 5 & -4 & 2 \\ 4 & 8 & -1 \end{bmatrix}.$$

Answers for 9.3 continued For use with pages 593-597

23.

24.

- **25.** The order is reversed.
- **26.** Steps 1–3:

27.
$$y = -3x - 4$$

28.
$$y = -2x^2 + 5$$

30.
$$y = x + 1$$

34. Sample answer: Reflect point H across line n and label it H'. Draw $\overline{JH'}$. Label the point where line *n* intersects at P. Park the car at P.

35. a. (cont.)

Given: A reflection in m maps P to P' and Q to Q'. Using the definition of a line of reflection, $\overline{QS} \cong \overline{Q'S}$ and $\angle OSR \cong \angle Q'SR$. Using the Reflexive Property of Segment Congruence, $\overline{RS} \cong \overline{RS}$. Using the SAS Congruence Postulate, $\triangle RSQ \cong \triangle RSQ'$.

b. Using corresponding parts of congruent triangles are congruent, $\overline{RQ} \cong \overline{RQ'}$. Using the definition of a line of reflection, $\overline{PR} \cong \overline{P'R}$. Since $\overline{PP'}$ and $\overline{QQ'}$ are both perpendicular to m, they are parallel. Using the Alternate Interior Angles Theorem, $\angle SQ'R \cong \angle P'RQ'$ and $\angle SQR \cong \angle PRQ$. Using corresponding parts of congruent triangles are congruent, $\angle SO'R \cong \angle SOR$. Using the Transitive Property of Angle Congruence, $\angle P'RO' \cong \angle PRO.$ $\triangle PRQ \cong \triangle P'RQ'$ using the SAS Congruence Postulate. Using corresponding parts of congruent triangles are congruent, $\overline{PQ} \cong \overline{P'Q'}$ which implies PQ = P'Q'.

9.3 Problem Solving

36. Given: A reflection in m maps Pto P' and Q to Q'. \overline{PQ} intersects mat point R. Using the definition of a line of reflection, m is the perpendicular bisector of $\overline{PP'}$ at point S and of $\overline{QQ'}$ at point T. From this you know that $\overline{P'S} \cong \overline{PS}, \overline{Q'T} \cong \overline{QT},$ $\angle P'SR \cong \angle PSR$ and $\angle QTR \cong \angle Q'TR$. The Reflexive Property of Segment Congruence says $RS \cong \overline{RS}$ and $\overline{RT} \cong \overline{RT}$. Using the SAS Congruence Postulate. $\triangle P'RS \cong \triangle PRS$ and $\triangle QRT \cong \triangle Q'RT$. Using corresponding parts of congruent triangles are congruent, $\overline{P'R} \cong \overline{PR}$ and $\overline{RQ} \cong \overline{RQ'}$. From this it follows the P'R + RQ' =PR + RQ, which implies P'Q' = PQ.

- **37.** Given: A reflection in m maps Pto P' and Q to Q'. Also, P lies on m, and \overline{PQ} is not perpendicular to m. Draw $\overline{Q'Q}$ intersecting m at point R. Using the definition of a line of reflection, m is the perpendicular bisector of $\overline{Q'Q}$, which implies $\overline{Q'R} \cong \overline{QR}$, $\angle Q'RP' \cong \angle QRP$, and P and P' are the same point. Using the Reflexive Property of Segment Congruence, $\overline{RP} \cong \overline{RP}$. Using the SAS Congruence Postulate, $\triangle Q'RP' \cong QRP$. Using corresponding parts of congruent triangles are congruent, $\overline{Q'P'} \cong \overline{QP}$ which implies O'P' = OP.
- **38.** Given: A reflection in m maps P to P' and Q to Q'. Also, Q lies on m, and \overline{PQ} is perpendicular to m. Using the definition of a line of reflection, point Q remains in the same location and is also known as Q'. Furthermore, m is the perpendicular bisector of $\overline{PP'}$ at point Q which makes PQ = P'Q'.
- **39. a.** B(3, 5)
 - **b.** H(0, 6); J(-1, 4)
 - **c.** In each case point *C* bisects each line segment.

- **40.** Yes, *Sample answer:* Starting at (3, 0) the ball would follow the following path: (1, 4), (5, 0), (8, 3), (7, 4), (3, 0) and end up at (0, 3).
- **41. a.** at a point that is directly across from the midpoint of the distance between your eye and your foot
 - **b.** at a point that is directly across from the midpoint of the distance between your eye and the top of your head
 - c. The top of the mirror F is directly across from the point that is halfway between the top of your head and your eye, and the bottom of the mirror E is directly across from the point that is halfway between your eye and your foot. So, the height of the mirror EF is half your height.

9.3 Mixed Review

- **42.** Perpendicular; Line 1 is horizontal and Line 2 is vertical.
- **43.** Parallel; both slopes are $\frac{3}{4}$.
- **44.** 102.5°
- **45**. 105°
- **46**. 100°