Answers for 8.5

For use with pages 546-549

8.5 Skill Practice

- 1. base leg leg S base
- 2. A trapaziod has one pair of parallel sides and at most one pair of congruent opposite sides. A kite has two pairs of consecutive congruent sides and opposite sides are not congruent.
- 3. trapezoid
- 4. not a trapezoid
- 5. not a trapezoid
- 6. trapezoid
- 7. 130°, 50°, 130°
- 8. 80°, 100°, 80°
- 9. 118°, 62°, 62°
- 10. Trapezoid; since both pairs of base angles are congruent, they must also be supplementary, because the sum of the measures of the angles of a quadrilateral is 360°, making $\overline{AB} \parallel \overline{DC}$.
- **11.** Trapezoid; $\overline{EF} \parallel \overline{HG}$ since they are both perpendicular to \overline{EH} .

- **12.** Trapezoid; $\overline{JK} \parallel \overline{ML}$
- **13**. 14

14. 23

15. 66.5

16. D

- 17. Only one pair of opposite angles in a kite is congruent. In this case $m \angle B = m \angle D = 120^{\circ}; m \angle A +$ $m \angle B + m \angle C + m \angle D = 360^{\circ}$. $m \angle A + 120^{\circ} + 50^{\circ} + 120^{\circ} =$ 360° , so $m \angle A = 70^{\circ}$.
- **18.** 110° **19.** 80°

20. 60°

21. $WX = XY = 3\sqrt{2}$, $YZ = ZW = \sqrt{34}$

22.
$$WX = WZ = 2\sqrt{13}$$
,

$$XY = YZ = 6\sqrt{5}$$

23.
$$XY = YZ = 5\sqrt{5}$$
,

$$WX = WZ = \sqrt{461}$$

24.
$$DC = 2MN - AB$$
 since

$$MN = \frac{AB + DC}{2};$$

$$DC = 2(8) - 14, DC = 2$$

- **25.** 2
- **26**. 3
- **27.** 2.3

Answers for 8.5 continued For use with pages 546–549

28.

 $MP = 6\sqrt{2}$, $NQ = 2\sqrt{13}$; MNPQ is not isosceles; Theorem 8.16.

29.

30. 12, 36

31. A

32. 6, 8; 50; solve the equation

$$\frac{x^2 + 36}{2} = 7x - 6$$
, the solution

x = 6 must be rejected because the midsegment will equal 36 and that is not possible.

quadrilateral that is not a quadrilateral that is not a parallelogram or a trapezoid would have no pair of opposite sides parallel. So, no consecutive angles would be supplementary. So, the measure of an interior angle could be greater than 180°.

34. 32.2 cm, 68.8 cm

35. *Sample:*

36. a. isosceles trapezoid, kite

b. It increases; $m \angle BAF$ approaches 180° , $m \angle ABC$ approaches 0° , and $m \angle BCF$ approaches 180° , and $m \angle CFA$ approaches 0° .

c. 65°, 115°, 115°; in an isosceles trapezoid base angles are congruent.

- **37.** Since $\overline{BC} \parallel \overline{AE}$ and $\overline{AB} \parallel \overline{EC}$. ABCE is a parallelogram which makes $\overline{AB} \cong \overline{EC}$. Using the Transitive Property of Segment Congruence, $\overline{CE} \cong \overline{CD}$ making $\triangle ECD$ isosceles. Since $\triangle ECD$ is isosceles $\angle D \cong \angle CED$. $\angle A \cong \angle CED$ using the Corresponding Angles Congruence Postulate, therefore $\angle A \cong \angle D$ using the Transitive Property of Angle Congruence. $\angle CED$ and $\angle CEA$ form a linear pair and therefore are supplementary. $\angle A$ and $\angle ABC$ are supplementary, and $\angle CEA$ and $\angle ECB$ are supplementary since they are consecutive pairs of angles in a parallelogram. Using the Congruent Supplements Theorem, $\angle A \cong \angle D$ and $\angle B \cong \angle BCD$.
- **38.** Since $\overline{FG} \parallel \overline{EJ}$ and $\overline{EF} \parallel \overline{JG}$, EFGJ is a parallelogram. Using the Corresponding Angles Theorem, $\angle E \cong \angle GJH$. It was given that $\angle E \cong \angle H$, therefore $\angle GJH \cong \angle H$ using the Transitive Property of Congruence. By the Converse of the Base Angles Theorem, $\triangle GHJ$ is isosceles with $\overline{JG} \cong \overline{HG}$. Since \overline{EFGH} is a parallelogram, $\overline{JG} \cong \overline{EF}$. Using the Transitive

- Property of Congruence, $\overline{EF} \cong \overline{HG}$. This makes EFGJ an isosceles trapezoid.
- 39. Given: JKLM is an isosceles trapezoid with $\overline{KL} \parallel \overline{JM}$ and $\overline{JK} \cong \overline{LM}$. Since pairs of base angles are congruent in an isosceles trapezoid, $\angle JKL \cong \angle MLK$. Using the Reflexive Property of Congruence, $\overline{KL} \cong \overline{KL}$. $\triangle JKL \cong \triangle MLK$ using the SAS Congruence Postulate. Using corresponding parts of congruent triangles are congruent, $\overline{JL} \cong \overline{KM}$.
- **40.** In a triangle the midsegment's length is half the length of the third side, therefore $BG = \frac{1}{2}CD$ and $GE = \frac{1}{2}AF$. This implies that $BG + GE = \frac{1}{2}CD + \frac{1}{2}AF$, which implies $BE = \frac{CD + AF}{2}$.

- **41.** Given: ABCD is a kite with $\overline{AB} \cong \overline{CB}$ and $\overline{AD} \cong \overline{CD}$. Using the Reflexive Property of Congruence, $\overline{BD} \cong \overline{BD}$ and $\overline{ED} \cong \overline{ED}$. Using the SSS Congruence Postulate, $\triangle BAD \cong \triangle BCD$. Using corresponding parts of congruent triangles are congruent, $\angle CDE \cong \angle ADE$. Using the SAS Congruence Postulate, $\triangle CDE \cong$ $\triangle ADE$. Using corresponding parts of congruent triangles are congruent, $\angle CED \cong \angle AED$. Since $\angle CED$ and $\angle AED$ are congruent and form a linear pair, they are right angles. This makes $AC \perp \overline{BD}$.
- 42. Given: EFGH is a kite with $\overline{EF} \cong \overline{GF}$ and $\overline{EH} \cong \overline{GH}$. Construct \overline{FH} . Using the Reflexive Property of Congruence, $\overline{FH} \cong \overline{FH}$. Using the SSS Congruence Postulate, $\triangle FGH \cong \triangle FEH$. Using corresponding parts of congruent triangles are congruent, $\angle G \cong \angle E$. Now suppose $\angle F \cong \angle H$. This would make EFGH a parallelogram and EFGH would not be a kite. This contradicts the given, thus $\angle F$ is not congruent to $\angle H$.
- 43. If the diagonals of a trapezoid are congruent, then the trapezoid is isosceles. Given: trapezoid JKLM with $\overline{KM} \cong \overline{JL}$. Draw \overline{KP} perpendicular to \overline{JM} at point P and draw LQ perpendicular to JMat point Q. KLQP is a rectangle with $KP \cong LQ$. Since $\triangle LQJ$ and $\triangle KPM$ are right triangles, they are congruent by the HL Congruence Theorem. Using corresponding parts of congruent triangles are congruent, $\angle LJM \cong$ $\angle KMJ$. Using the Reflexive Property of Congruence, $\overline{JM} \cong \overline{JM}$. $\triangle LJM \cong \triangle KMJ$ by the SAS Congruence Postulate. Using corresponding parts of congruent triangles are congruent, $KJ \cong LM$. Trapezoid JKLM is isosceles.

8.5 Mixed Review

44. Sample:

46. CD

47.

(1, 2)

48.

(5, 4)