swers for 8.2

For use with pages 518-521

- 1. A parallelogram is a quadrilateral with both pairs of opposite sides parallel; opposite sides are congruent, opposite angles are congruent, consecutive angles are supplementary, and the diagonals bisect each other.
- **2.** $m \angle B = 115^{\circ}$ since consecutive angles are supplementary and $m \angle C = 65^{\circ}$ and $m \angle D = 115^{\circ}$ since opposite angles are congruent.

3.
$$x = 9, y = 15$$

4.
$$m = 5, n = 12$$

5.
$$a = 55$$

6.
$$p = 60$$

7.
$$d = 126, z = 28$$

8.
$$g = 61, h = 9$$

12. 102° 78° 1029

$$m \angle S = 78^{\circ}, m \angle P = 102^{\circ},$$

 $m \angle Q = 78^{\circ}, m \angle R = 102^{\circ}$

13.
$$a = 3, b = 10$$

14.
$$m = 4, n = 3$$

15.
$$x = 4, y = 4$$

- **17.** \overline{BC} ; opposite sides of a parallelogram are congruent.
- **18.** $\angle BCD$; opposite angles of a parallelogram are congruent.
- **19.** $\angle DAC$; alternate interior angles are congruent.
- **20.** 47°; opposite angles of a parallelogram are congruent.
- 21. 47°; consecutive angles of a parallelogram are supplementary and alternate interior angles are congruent.
- 22. 86°; alternate interior angles are congruent.
- **23.** 120° ; $\angle EJF$ and $\angle FJG$ are a linear pair.
- 24. 85°; Alternate Interior Angles Theorem with $\angle HEG$
- 25. 35°; Triangle Sum Theorem
- 26. 45; Alternate Interior Angles Theorem with ∠HGE
- **27.** 130°; sum of the measures of $\angle HGE$ and $\angle EGF$
- 28. 50°; consecutive angles are supplementary, $\angle HGF$ and $\angle EHG$.

30. 36°, 144° **31.** 26°, 154°

- **32.** $\angle B$ and $\angle A$ are consecutive angles and thus are supplementary which makes $m \angle A = 130^{\circ}$.
- **33.** 20, 60° ; UV = TS = QR using the fact that opposite sides are congruent and the Transitive Property of Equality. $\angle TUS \cong \angle VSU$ by the Alternate Interior Angles Congruence Theorem and $m \angle TSU = 60^{\circ}$ by the Triangle Sum Theorem.

34.

35. Sample answer: In a parallelogram, opposite angles are congruent. $\angle A$ and $\angle C$ are opposite angles but not congruent.

36. 16°

37. (-2, 4), (4, 0), (8, 8);

In each quadrilateral each pair of opposite sides is parallel.

ers for 8.2 continued For use with pages 518–521

8.2 Problem Solving

- **38.** 140° ; $\angle C$ and $\angle D$ are consecutive angles and therefore are supplementary.
- 39. a. 3 in.
 - **b.** 70°
 - c. It decreases; it gets longer; the sum of the measures of the interior angles always is 360°. As $m \angle Q$ increases so does $m \angle S$ therefore $m \angle P$ must decrease to maintain the sum of 360°. As $m \angle Q$ decreases $m \angle P$ increases, moving Qfarther away from S.

40. 8

41. *Sample:*

Since $\triangle ABC \cong \triangle DCB$ you know $\angle ACB \cong \angle DBC$ and $\angle ABC \cong \angle DCB$. Using the Alternate Interior Angles Converse, $\overline{BD} \parallel \overline{AC}$ and $\overline{AB} \parallel \overline{CD}$ thus making ABDC a parallelogram. If two more triangles are positioned the same as the first, you can line up the pair of congruent sides and form a larger parallelogram because both

BOLE: 1) 151 5) 145 2) 118 u) x=4, y=3 s) x=9, y=5 6) 0:95, 6=85

> pairs of alternate interior angles are congruent. Using the Alternate Interior Angles Converse, opposite sides are parallel.

- 42. Statements (Reasons)
 - 1. ABCD is a parallelogram.

(Given)

- 2. $\overline{BD} \parallel \overline{AC}, \overline{AB} \parallel \overline{CD}$ (Definition of a parallelogram)
- 3. $\angle CBD \cong \angle ADB$, $\angle CDB \cong \angle ADB$ (Alternate Interior Angles Congruence Theorem)
- 4. $\overline{BD} \cong \overline{RD}$ (Reflexive Property of Segment Congruence)
- $\triangle ABD \cong \triangle CDB$ (ASA)
- 6. $\angle A \cong \angle C, \angle B \cong \angle D$ (Corr. parts of $\cong \triangle$ are \cong .)
- **43.** Sample answer: Given that PQRS is a parallelogram you know that $\overline{QR} \parallel \overline{PS}$ with \overline{QP} being a transversal. By definition and the fact that they are consecutive interior angles, $\angle Q$ and $\angle P$ are supplementary using the Consecutive Interior Angles Theorem. So $x^{\circ} + y^{\circ} = 180^{\circ}$ by the definition of supplementary angles.

44. Statements (Reasons)

1. PQRS is a parallelogram.

(Given)

2.
$$\overline{PQ} \cong \overline{RS}$$
, $\overline{QR} \cong \overline{SP}$
(If a quadrilateral is a parallelogram, then its opposite sides are congruent.)

- 3. $\angle OPR \cong \angle SRP$ $\angle POS \cong \angle RSO$ $\angle RPS \cong \angle QRP$ $\angle PSQ \cong \angle RQS$ (Alternate Interior Angles Congruence Theorem)
- 4. $\triangle PMQ \cong \triangle RMS$, $\triangle QMR \cong \triangle SMP$ (ASA)
- 5. $\overline{OM} \cong \overline{SM}$. $\overline{PM} \cong \overline{RM}$ (Corr. parts of $\cong \triangle$ are \cong .)
- 6. M bisects \overline{QS} and \overline{PR} .

(Definition of segment bisector)

45. Sample answer: $\triangle DCG \sim \triangle ACF$ and $\triangle DAE \sim \triangle ACF$ using the AA Similarity Postulate.

 $\frac{DG}{AF} = \frac{DC}{AC}$ and $\frac{DE}{AF} = \frac{DA}{AC}$ since the

ratio of corresponding sides of similar triangles are equal. Adding you get

$$\frac{DE}{AF} + \frac{DG}{AF} = \frac{DA}{AC} + \frac{DC}{AC}$$
, which implies

$$\frac{DE + DG}{AF} = \frac{DA + DC}{AC}, \text{ which}$$
implies
$$\frac{DE + DG}{AF} = \frac{AC}{AC}, \text{ which}$$
implies
$$\frac{DE + DG}{AF} = 1, \text{ which}$$
implies
$$DE + DG = AF.$$

- **46.** Neither; the slope of line 1 is $-\frac{3}{2}$ and the slope of line 2 is $-\frac{7}{4}$.
- **47.** Parallel; the slope of both lines is -1.
- **48.** Neither; the slope of line 1 is $-\frac{5}{3}$ and the slope of line 2 is $-\frac{5}{2}$.
- 49. triangle; obtuse
- 50. triangle; acute
- 51. triangle; right
- 52. not a triangle
- 53. triangle; right
- 54. triangle; acute
- **55.** $4\sqrt{3}$ **56.** 30 **57.** $4\sqrt{2}$