## **Answers for 6.5**

For use with pages 391-395

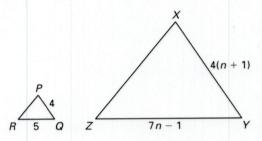
## 6.5 Skill Practice

- 1. PX, CB, PQ
- 2. You would need to know that one pair of corresponding sides is congruent.

**3.** 
$$\frac{18}{12} = \frac{15}{10} = \frac{12}{8}$$
;  $\frac{3}{2}$ 

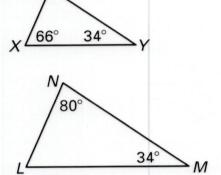
**4.** 
$$\frac{10}{25} = \frac{16}{40} = \frac{20}{50}; \frac{2}{5}$$

- **5.**  $\triangle RST$
- **6.** △*JKL*
- **7.** similar;  $\triangle FDE \sim \triangle XWY$ ; 2:3
- 8. not similar
- 9. 3;



**10.** 
$$\triangle GHJ \sim \triangle FHK$$
;  $\frac{FH}{GH} = \frac{HK}{HJ}$   
=  $\frac{KF}{JG} = \frac{4}{3}$  thus the triangles are similar by the SSS Similarity Theorem.

- 11.  $\triangle ABC \sim \triangle DEC$ ;  $\angle ACB \cong \angle DCE$  by the Vertical Angles Congruence Theorem and  $\frac{AC}{DC} = \frac{BC}{EC} = \frac{3}{2}$ . The triangles are similar using the SAS Similarity Theorem.
- **12.**  $\triangle XYZ \sim \triangle DJG$ ;  $\angle D \cong \angle X$  and  $\frac{DG}{XZ} = \frac{DJ}{XY} = \frac{5}{3}$ . The triangles are similar by the SAS Similarity Theorem.
- **13.** Sample answer: The triangle correspondence is not listed in the correct order;  $\triangle ABC \sim \triangle RQP$ .
- 14. D
- 15.



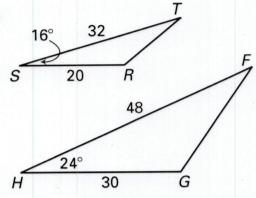
They are similar by the AA Similarity Postulate.

**A13** 

## Answers for 6.5 continued

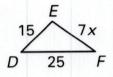
For use with pages 391-395

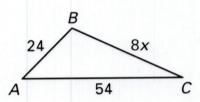
16.



They are not similar since the larger side in  $\triangle RST$  would not be opposite the largest angle.

17.





They are not similar since the ratio of corresponding sides is not constant for any arrangement of side lengths.

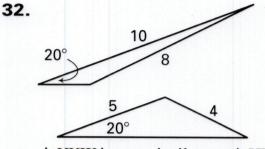
- **18.** 53°
- **19.** 45°
- **20.** 82°

- 21. 24
- **22.** 42
- **23.**  $16\sqrt{2}$
- **24.**  $\triangle NSM$  and  $\triangle NRP$ ,  $\triangle NSL$  and  $\triangle NRQ$ ,  $\triangle NLM$  and  $\triangle NQP$
- **25.**  $\frac{3}{2}$
- **26.**  $\frac{9}{4}$

27. In similar triangles the ratio of the areas is the square of the scale factor. Sample answer: Let the base and height of  $\triangle VWX$  measure 3a and 3b and the base and height of  $\triangle ABC$  measure 2a and 2b. The ratio of their areas is  $\frac{3a(3b)}{2}$   $\frac{2}{2a(2b)} = \frac{9}{4}$ .

## 6.5 Problem Solving

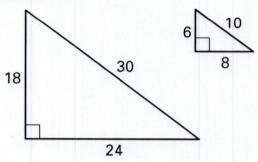
- **28.** AA Similarity Postulate; in  $\triangle AGB \angle A$  and  $\angle AGB$  are congruent to  $\angle A$  and  $\angle AFC$  in  $\triangle AFC$ . In  $\triangle AFC \angle A$  and  $\angle AFC$  are congruent to  $\angle A$  and  $\angle AED$  in  $\triangle AED$ .
- **29.** The triangle whose sides measure 4 inches, 4 inches, and 7 inches is similar to the triangle whose sides measure 3 inches, 3 inches, and 5.25 inches.
- **30.**  $\frac{CD}{CE}$  is the same scale factor as the other ratio.
- **31.**  $\angle CBD \cong \angle CAE$
- 33. 63 AA A POST 6) 80ft c) 70.8ft
- 64)8,24, 6) & c) yes, yes



 $\triangle XYW$  is not similar to  $\triangle XZW$ .

- 33. a. AA Similarity Postulate
  - **b.** 80 ft
  - **c.** 70.8 ft

**34. a.** 8, 24;



**b.**  $\frac{1}{3}$ 

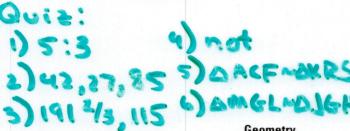
Copyright © by McDougal Littell, a division of Houghton Mifflin Company

- c. yes; yes
- **35.** Sample answer: Given that D and E are midpoints of  $\overline{AB}$  and  $\overline{BC}$  respectively the Midsegment Theorem guarantees that  $\overline{AC} \parallel \overline{DE}$ . By the Corresponding Angles Postulate  $\angle A \cong \angle BDE$  and so  $\angle BDE$  is a right angle. Reasoning similarly  $\overline{AB} \parallel \overline{EF}$ . By the Alternate Interior Angles Congruence Theorem  $\angle BDE \cong \angle DEF$ . This makes  $\angle DEF$  a right angle that measures  $90^{\circ}$ .

- **36.** Yes. Sample answer: All pairs of similar triangles have angle pairs whose measures are in proportion (with constant of proportionality 1).
- so that GB = DE. Draw  $\overline{GH}$  so that  $\overline{GH} \parallel \overline{AC}$ . This makes  $\triangle ABC \sim \triangle GBH$  by the AA Similarity Postulate. From this similarity you have  $\frac{AB}{GB} = \frac{AC}{GH}$ . Using this along with what's given, you get  $\overline{GH} = \frac{GB}{DE}$  which implies that  $\overline{GH} \cong \overline{DF}$ , making  $\triangle GBH \cong \triangle DEF$ . Finally, use the definition of congruent triangles and the AA Similarity Postulate to conclude  $\triangle ABC \sim \triangle DEF$ .
- **38.** about 15.4 ft
- 6.5 Mixed Review



- **39.** 6
- **40.** 2
- **41.**  $-\frac{7}{10}$
- **42.** AAS Congruence Theorem;  $\triangle QRT \sim \triangle STR$
- **43.** 7.5
- **44.** 24



A15