# **Answers for 6.4**

For use with pages 384-387

### 6.4 Skill Practice

- 1. similar
- 2. No; the ratio of corresponding sides would be the same but they would not necessarily be congruent.
- $3. \land FED$
- 4. EF, FD, DE
- **5.** 15, y **6.** 15, x
- **7.** 20
- 8. 30
- **9.** similar;  $\triangle FGH \sim \triangle KLJ$
- **10.** similar;  $\triangle NYM \sim \triangle ZYX$
- 11. not similar
- **12.** similar;  $\triangle CBD \sim \triangle CAE$
- **13.** similar;  $\triangle YZX \sim \triangle YWU$
- **14.** similar;  $\triangle NMP \sim \triangle NLQ$
- 15. The AA Similarity Postulate is for triangles, not quadrilaterals.
- **16.** B
- 17. 5 should be replaced by 9, which is the length of the corresponding side of the larger triangle.

Sample answer: 
$$\frac{4}{6} = \frac{9}{x}$$

**18.** Sample:



19. Sample:



- **21.** (10,0) **22.**  $(\frac{28}{3},0)$ **20**. A
- **24.**  $\left(\frac{9}{2}, 0\right)$ **23.** (24, 0)
- 25. a. 8 10 15
  - **b.** Sample answer:  $\angle ABE$  and  $\angle CDE$ ,  $\angle BAE$  and  $\angle DCE$
  - **c.**  $\triangle ABE$  and  $\triangle CDE$ ,  $\triangle ABE \sim \triangle CDE$
  - **d.** 4, 20

A9

#### inswers for 6.4 continued For use with pages 384-387

- **26.** Yes; in  $\triangle JKL \ m \angle L = 57^{\circ}$ making the triangles similar by the AA Similarity Postulate.
- **27.** Yes; either  $m \angle X$  or  $m \angle Y$  could be 90°, and the other angles could be the same.
- **28.** No;  $87^{\circ} + 94^{\circ} = 181^{\circ}$  is already greater than the possible total measure for three angles in a triangle.
- **29.** No; since  $m \angle J + m \angle K = 85^{\circ}$ then  $m \angle L = 95^{\circ}$ . Since  $m \angle Y +$  $m \angle Z = 80^{\circ}$  then  $m \angle X = 100^{\circ}$ and thus neither  $\angle Y$  nor  $\angle Z$  can measure 95°.
- **30.**  $\frac{4}{3}x$ ; solve the proportion  $\frac{a}{a + \frac{8}{2}x} = \frac{x}{3x}$  where PS = a.

### 6.4 Problem Solving

- **31.** about 30.8 in.
- 32. a. Angle-Angle Similarity **Postulate** 
  - **b.** 78 m
- **c.** 130 m
- 33. The measure of all angles in an equilateral triangle is 60°.





**34.** 
$$133\frac{1}{3}$$
 m

35.



Since  $\triangle STU \sim \triangle PQR$  you know that  $\angle T \cong \angle Q$  and  $\angle UST \cong$  $\angle RPQ$ . Since  $\overline{SV}$  bisects  $\angle TSU$ and  $\overline{PN}$  bisects  $\angle QPR$  you know that  $\angle USV \cong \angle VST$  and  $\angle RPN$  $\cong \angle NPQ$  by definition of angle bisector. You know that  $m \angle USV$  $+ m \angle VST = m \angle UST$  and  $m \angle RPN + m \angle NPQ = m \angle RPQ$ , therefore  $2m \angle VST = 2m \angle NPQ$ using the Substitution Property of Equality. You now have  $\angle VST \cong \angle NPQ$  which makes  $\triangle VST \sim \triangle NPQ$  using the AA Similarity Postulate. From this you know that  $\frac{SV}{PN} = \frac{ST}{PO}$ .

A10

- **36.** Sample answer: If  $\angle ACB$  and  $\angle EFB$  are right angles, then they are congruent. This, along with the fact that  $\angle A \cong \angle E$ , makes  $\triangle ABC \sim \triangle EDF$  by the AA Similarity Postulate.
- **37. a.** Sample:



- **b.**  $m \angle ADE = m \angle ACB$  and  $m \angle AED = m \angle ABC$
- **c.**  $\triangle ADE \sim \triangle ACB$
- d. Sample answer:

$$\frac{AD}{AC} = \frac{AE}{AB} = \frac{DE}{CB} = \frac{1}{2}$$

- e. The measures of the angles change, but the equalities remain the same. The lengths of the sides change, but they remain proportional; yes; the triangles remain similar by the AA Similarity Postulate.
- **38.** Since the two triangles are similar, the ratios of the corresponding sides are the same; therefore compare the vertical rise to the horizontal run.

- **39.** Let  $\triangle ABC \sim \triangle DEF$ , let  $\overline{AN}$ bisect  $\angle BAC$ , and let  $\overline{DM}$  bisect  $\angle EDF$ . By the definition of similar triangles,  $\angle B \cong \angle E$  and  $\angle BAC \cong \angle EDF$ . By the definition of angle bisector.  $\angle BAN \cong \angle NAC$  and  $\angle EDM \cong$  $\angle MDF$ . The Angle Addition Postulate gives  $m \angle BAN +$  $m \angle NAC = m \angle BAC$  and  $m\angle EDM + m\angle MDF =$  $m \angle EDF$ . By substitution we get  $m \angle BAN + m \angle NAC = m \angle EDM$  $+ m \angle MDF$ , and then  $m \angle BAN +$  $m \angle BAN = m \angle EDM +$  $m \angle EDM$ , and then  $2m \angle BAN =$  $2m\angle EDM$ , so  $m\angle BAN =$  $m \angle EDM$ . Now, by the AA Similarity Postulate,  $\triangle BAN \sim \triangle EDM$  so  $\frac{AN}{DM} = \frac{AB}{DE}$ where  $\frac{AB}{DE}$  is the scale factor.
- 40. The two right triangles formed by the altitudes and the two sides measuring a and b are similar by the AA Similarity Postulate. Since the ratio of the hypotenuses is  $\frac{b}{a}$  then the ratio of corresponding sides, which are the altitudes of the original triangles is the same ratio by Corresponding Lengths in Similar Polygons.

## 6.4 Mixed Review

- **41.** Sample answer:  $\angle 1$  and  $\angle 5$ ,  $\angle 3$  and  $\angle 7$ ,  $\angle 2$  and  $\angle 6$
- **42.**  $\angle 3$  and  $\angle 6$ ,  $\angle 4$  and  $\angle 5$
- **43.**  $\angle 1$  and  $\angle 8$ ,  $\angle 2$  and  $\angle 7$
- **44.** 180°
- **45.**  $\angle BEA \cong \angle CED$  using the Vertical Angles Congruence Theorem making  $\triangle ABE \cong \triangle CDE$  by the SAS Congruence Theorem.

**46.** 
$$\frac{1}{5}$$

**47.** 
$$\frac{2}{1}$$