- **1.** $\angle A, \overline{BC}; \angle B, \overline{CA}; \angle C, \overline{AB}$
- **2.** It is opposite the largest angle; it is opposite the smallest angle.
- **3.** Sample answer: The longest side is opposite the largest angle. The shortest side is opposite the smallest angle.
- 4. Sample answer: The side and angle whose measures are between the smallest and largest side and angle respectively lie between the smallest and largest angle and smallest and largest side respectively.
- **5.** Sample answer: The largest side is opposite the obtuse angle and two angles with the same measure are opposite the sides with the same measure.
- **6.** \overline{AB} , \overline{BC} , \overline{CA} ; $\angle C$, $\angle A$, $\angle B$
- **7.** \overline{XY} , \overline{YZ} , \overline{ZX} ; $\angle Z$, $\angle X$, $\angle Y$
- **8.** \overline{RT} , \overline{ST} , \overline{RS} ; $\angle S$, $\angle R$, $\angle T$
- **9.** \overline{KL} , \overline{JL} , \overline{JK} ; $\angle J$, $\angle K$, $\angle L$
- **10.** \overline{NP} , \overline{MN} , \overline{PM} ; $\angle M$, $\angle P$, $\angle N$
- **11.** \overline{DF} , \overline{FG} , \overline{GD} ; $\angle G$, $\angle D$, $\angle F$
- **12.** C

- **16.** yes
- 17. No; 3 + 6 is not greater than 9.
- **18.** yes
- 19. yes
- **20.** B
- **21.** 7 in. < x < 17 in.
- **22.** 1 m < x < 7 m
- **23.** 6 ft < x < 30 ft
- **24.** 13 yd < x < 33 yd
- **25.** 16 in. < x < 64 in.
- **26.** 0 m < x < 50 m

- **27.** $\angle A$ and $\angle B$ are the nonadjacent interior angles to $\angle 1$ thus by the Exterior Angle Inequality Theorem $m\angle 1 = m\angle A + m\angle B$, which guarantees $m\angle 1 > m\angle A$ and $m\angle 1 > m\angle B$.
- 28. The diagram indicates that an exterior angle of the triangle has the same measure as one of the nonadjacent interior angles, which cannot be.
- **29.** The longest side is not opposite the largest angle.
- 30. The hypotenuse is opposite the 90° angle in a right triangle which is the largest angle in the triangle.
- **31.** yes; $\angle Q$, $\angle P$, $\angle R$
- **32.** no
- **33.** 2 < x < 15
- **34.** $\frac{15}{7} < x < 13$
- **35.** $\angle WXY$, $\angle Z$, $\angle ZXY$, $\angle WYX$ and $\angle ZYX$, $\angle W$; $\angle ZYX$ is the largest angle in $\triangle ZYX$ and $\angle WYX$ is the middle sized angle in $\triangle WXY$ making $\angle W$ the largest angle. $m\angle WXY + m\angle W = m\angle Z + m\angle ZXY$ making $\angle WXY$ the smallest.

36.
$$4 < P < 24$$
; $2 < FG < 8$, $1 < GH < 7$, and $1 < HF < 9$

5.5 Problem Solving

- **37.** $m \angle P < m \angle Q, m \angle P < m \angle R;$ $m \angle Q = m \angle R$
- **38.** 35 yd < AB < 50 yd. Sample answer: Extend \overrightarrow{BA} through E such that $m \angle ACE = 40^{\circ}$, then measure \overrightarrow{AE} .
- **39. a.** The sum of the other two side lengths is less than 1080 km.
 - b. No; the sum of the distance from Granite Peak to Fort Peck Lake and Granite Peak to Glacier National Park must be more than 565 km.
 - **c.** d > 76 km, d < 1054 km
 - **d.** The distance is less than 489 kilometers.
- **40.** Yes; pick the two shortest sides and see if their sum is greater than the third side.
- 41. Sample:

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

42.

- **43.** Sample answer: 3, 4, 17; 2, 5, 17; 4, 4, 16
- **44.** 350 yd < d < 1068 yd
- **45.** $1\frac{1}{4}$ mi $\leq d \leq 2\frac{3}{4}$ mi; if the locations are collinear then the distance could be $1\frac{1}{4}$ miles or $2\frac{3}{4}$ miles. If the locations are not collinear then the distance must be between $1\frac{1}{4}$ miles and $2\frac{3}{4}$ miles because of the Triangle Inequality Theorem.

- **46.** vertex angle: $60^{\circ} < x < 180^{\circ}$; vertex angle: $0^{\circ} < x < 60^{\circ}$
- 47.

One side, say \overline{BC} , is longer than or at least as long as each of the other sides. Then (1) and (2) are true, the proof for (3) follows.

Statements (Reasons)

- 1. $\triangle ABC$ (Given)
- 2. Extend \overline{AC} to D so that $\overline{AB} \cong \overline{AD}$. (Ruler Postulate)
- 3. AB = AD (Definition of segment congruence)
- 4. AD + AC = DC (Segment Addition Postulate)
- 5. $\angle 1 \cong \angle 2$ (Base Angles Theorem)
- 6. $m \angle 1 = m \angle 2$ (Definition of segment congruence)
- 7. $m \angle DBC > m \angle 2$ (Protractor Postulate)
- 8. $m \angle DBC > m \angle 1$ (Substitution Property of Equality)

Answers for 5.5 continued For use with pages 331–334

- **47.** (cont.)
 - 9. DC > BC (If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side side opposite the smaller angle.)
 - 10. AD + AC > BC (Substitution Property of Equality)
 - 11. AB + AC > BC (Substitution Property of Equality)
- **48. a.** Statements (Reasons)
 - 1. $\triangle ABC$ and median \overline{AM}

(Given)

- 2. Extend \overline{AM} to point D such that $\overline{AM} \cong \overline{DM}$, create $\triangle CDB$. (Construction)
- 3. $\overline{MB} \cong \overline{MC}$ (Definition of median)
- 4. $\angle AMB \cong \angle DMC$ (Vertical Angles Congruence Theorem)
- 5. $\triangle AMB \cong \triangle DMC$ (SAS)
- 6. $\overline{AB} \cong \overline{DC}$ (Corr. parts of $\cong \mathbb{A}$ are \cong .)
- 7. AB = DC, AM = DM (Definition of segment congruence)

- 8. AM + MD = AD (Segment Addition Postulate)
- 9. AM + AM = AD (Substitution Property of Equality)
- 10. 2AM = AD (Simplify.)
- 11. AD < AC + CD (Triangle Inequality Theorem)
- 12. AD < AC + AB (Substitution Property of Equality)
- 13. 2AM < AC + AB (Simplify.)
- 14. $AM < \frac{1}{2}(AC + AB)$

(Multiplication Property of Equality)

- 15. $\frac{1}{2}(AB + AC) <$ $\frac{1}{2}(AB + AC + BC) \text{ (Property of Real Numbers)}$
- 16. $AM < \frac{1}{2}(AB + AC + BC)$ (Transitive Property)
- **b.** In $\triangle ABC$, let \overline{AX} , \overline{BY} , and \overline{CZ} be medians. By the concurrence of Medians of Triangle Theorem,

$$\frac{2}{3}AX + \frac{2}{3}BY > AB,$$

$$\frac{2}{3}AX + \frac{2}{3}CZ > AC$$
, and

$$\frac{2}{3}BY + \frac{2}{3}CZ > BC.$$

48. b. (cont.)

Adding the left sides and right sides of the three inequalities

you get
$$\frac{4}{3}(AX + BY + CZ) >$$

$$AB + AC + BC$$

Multiplying both sides by $\frac{3}{4}$

you get
$$AX + BY + CZ >$$

$$\frac{3}{4}(AB + AC + BC).$$

Therefore
$$AX + BY + CZ > \frac{1}{2}(AB + AC + BC)$$
.

5.5 Mixed Review

- 49. If a tree is a redwood, then it is a large tree; if a tree is large, then it is a redwood; if a tree is not a redwood, then it is not large; if a tree is not large, then it is not a redwood.
- **50.** If 5x 2 = 18, then x = 4; if x = 4, then 5x 2 = 18; if $5x 2 \neq 18$, then $x \neq 4$; if $x \neq 4$, then $5x 2 \neq 18$.

51. Scalene; not a right triangle.

