Copyright © by McDougal Littell, a division of Houghton Mifflin Company

For use with pages 322-325

5.4 Skill Practice

- 1. circumcenter: when it is an acute triangle, when it is a right triangle, when it is an obtuse triangle; incenter: always, never, never; centroid: always, never, never; orthocenter: when it is an acute triangle, when it is a right triangle, when it is an obtuse triangle.
- 2. Both are perpendicular to a side of the triangle, although the altitude contains the vertex opposite the side while a perpendicular bisector bisects the side but does not necessarily contain the opposite vertex; both bisect one side of a triangle, although the perpendicular bisector does not necessarily contain the opposite vertex while the median is not necessarily perpendicular to the side but does contain the opposite vertex.
- **3.** 12
- **4.** 9
- **5.** 10

- **6.** 5
- **7.** D
- **8. a.** (8, 1); (5, 1)
 - **b.** (5, -1); SQ = 4 and SR = 6, therefore $SQ = \frac{2}{3}SR$.
- **9.** (3, 2)
- **10.** (3, 4)

- 13. no; no; yes
- **14.** yes; yes; yes
- **15.** no; yes; no
- **16.** *T* is the orthocenter, but the centroid is needed to reach the conclusion.
- 17. altitude
- 18. angle bisector
- 19. median
- **20.** perpendicular bisector, angle bisector, median, altitude
- **21.** perpendicular bisector, angle bisector, median, altitude

Answers for 5.4 continued For use with pages 322–325

- **22.** perpendicular bisector, angle bisector, median, altitude
- **23.** 6, 22°; $\triangle ABD \cong \triangle CBD$ by HL, use corr. parts of $\cong \triangle s$ are \cong .
- **24.** 90°, 22°; $\triangle ABD \cong \triangle CBD$ by SSS, use definition of a linear pair and corr. parts of $\cong \triangle s$ are \cong .

27.
$$\frac{3}{2}$$

28. If the base angles of the isosceles triangle are placed at (-a, 0) and (0, a), the vertex angle will be on the y-axis.

29.

30.

31.

32. Sample answer: The midpoint of \overline{FG} is L(3, 7), so the equation of the median from H(6, 1) to L(3, 7) is y = -2x + 13. P(4, 5) lies on this median. The midpoint of \overline{GH} is J(5, 5), so the equation of the median from F(2, 5) to J(5, 5) is y = 5. P(4, 5) lies on this median, so all three medians intersect at the centroid.

33.
$$\frac{5}{2}$$

36. $\frac{9\sqrt{19}}{2}$, $\frac{9\sqrt{19}}{2}$; yes; the height and

base of both triangles will always be the same.

- 5.4 Problem Solving
- **37.** B; it is the centroid of the triangle.
- 40. Right D Orthocenter is on the vertex at the right angle

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

38. *Sample:*

- **39.** 6.75 in.²; median
- **40.** Right; the orthocenter is on the right angle.
- **41.** (0, 2);

- **42. a.** Statements (Reasons)
 - 1. $\triangle ABC$ is equilateral, \overline{BD} is an altitude of $\triangle ABC$. (Given)
 - 2. $\overline{AB} \cong \overline{BC}$ (Definition of equilateral triangle)
 - 3. $\overline{BD} \cong \overline{BD}$ (Reflexive Property of Segment Congruence)

- 4. ∠ADC and ∠CDB are right angles. (Definition of altitude)
- 5. $\triangle ABD \cong \triangle CBD$ (HL)
- 6. $\overline{AD} \cong \overline{CD}$ (Corr. parts of $\cong \triangle$ are \cong .)
- 7. AD = CD (Definition of segment congruence)
- 8. \overline{BD} is a perpendicular bisector of \overline{AC} . (Definition of perpendicular bisector)
- **b.** Statements (Reasons)
- 1. $\triangle ABC$ is equilateral. (Given)
- Draw a line perpendicular to AC passing through B.
 (Perpendicular Postulate)
- 3. $\overline{AB} \cong \overline{BC}$, $\angle A \cong \angle C$ (Definition of equilateral triangle)
- 4. $\overline{BD} \cong \overline{BD}$ (Reflexive Property of Segment Congruence)
- $5. \ \triangle ADB \cong \triangle CDB \tag{HL}$
- 6. $\overline{AD} \cong \overline{CD}$ (Corr. parts of $\cong \triangle$ are \cong .)
- 7. AD = CD (Definition of segment congruence)
- 8. \overline{BD} is a perpendicular bisector of \overline{AC} . (Definition of perpendicular bisector)

- **43.** a. Check students' work.
 - **b.** Their areas are the same.
 - **c.** They weigh the same; it means the weight of $\triangle ABC$ is evenly distributed around its centroid.
- **44.** a. $-\frac{2}{3}$
 - **b.** $y = \frac{1}{2}x, x = 8, y = -\frac{2}{3}x + \frac{28}{3},$ (8, 4)
 - **c.** Find the equation of each perpendicular bisector of each side and solve the system.
- **45. a.** Statements (Reasons)
 - 1. \overline{LP} and \overline{MQ} are medians of scalene $\triangle LMN$, R is on \overrightarrow{LP} such that $\overline{LP} \cong \overline{PR}$, S is on \overline{MQ} such that $\overline{MQ} \cong \overline{QS}$.

(Given)

- 2. $\overline{MP} \cong \overline{NP}, \overline{QL} \cong \overline{QN}$ (Definition of median)
- 3. $\angle MPL \cong \angle NPR$, $\angle MQL \cong \angle SQN$ (Vertical Angles Congruence Theorem)
- 4. $\triangle MPL \cong \triangle NPR$, $\triangle MQL \cong \triangle SQN$ (SAS)
- 5. $\overline{ML} \cong \overline{NR}, \overline{ML} \cong \overline{NS}$ (Corr. parts of $\cong \triangle$ are \cong .)
- 6. $\overline{NR} \cong \overline{NS}$ (Transitive Property of Segment Congruence)

- **b.** Statements (Reasons)
- 1. $\triangle MPL \cong \triangle NRP$, $\triangle MQL \cong \triangle SQN$ (Exercise 45a)
- 2. $\angle MLP \cong \angle NRP$, $\angle MLQ \cong \angle SQN$ (Corr. parts of $\cong \&$ are \cong .)
- 3. $\overline{LM} \| \overline{RN}, \overline{LM} \| \overline{SN}$ (Converse of Alternate Interior Angles Theorem)
- c. Statements (Reasons)
- 1. $\overline{LM} \| \overline{RN}, \overline{LM} \| \overline{SN}$ (Exercise 45b)
- 2. S, N, and R are collinear.
 (Parallel Postulate)

5.4 Mixed Review

- **46.** y = 3x + 7
- **47.** $y = -\frac{1}{2}x 6$
- **48.** y = -5x + 4
- **49.** 23

50. x < 11

51. x > -6

52. x < 4

- **53.** LP and LN, PM and NM
- **54.** 2

55. 15

Quiz:

- 1) 10; L Bisector Thin
- Bisectors of a AThm