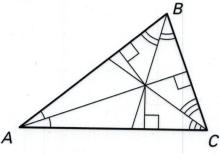
- 1. bisector
- 2. Perpendicular bisectors bisect line segments while angle bisectors bisect angles; both divide the segment or angle into two equal parts, and both have special points of intersection.
- **3.** 20°
- **4.** 12
- **5.** 9
- **6.** Yes; $\angle BAD \cong \angle CAD$, $\overline{DB} \perp \overline{AB}$ and $\overline{DC} \perp \overline{AC}$ so by the Angle Bisector Theorem DB = DC.
- **7.** No; you do not know that $\angle BAD \cong \angle CAD$.
- **8.** No; you do not know that $\overline{DB} \perp \overline{AB}$ or $\overline{DC} \perp \overline{AC}$.
- **9.** No; you don't know that $\overline{HG} \cong \overline{HF}, \overline{HF} \perp \overrightarrow{EF}$, or $\overline{HG} \perp \overrightarrow{EG}$.
- **10.** Yes; Converse of Angle Bisector Theorem
- **11.** No; you don't know that $\overrightarrow{HF} \perp \overrightarrow{EF}$ or $\overrightarrow{HG} \perp \overrightarrow{EG}$.
- **12.** 5
- **13.** 4
- **14.** 8
- **15.** No; the segments with length *x* and 3 are not perpendicular to their respective rays.
- **16.** No; you do not know that the altitude bisects the angle.

- **17.** Yes; x = 7 using the Angle Bisector Theorem.
- **18.** B
- **19.** 9
- **20.** 8
- **21.** GD is not the perpendicular distance from G to \overline{CE} . The same is true about GF; the distance from G to each side of the triangle is the same.
- **22.** T is not the incenter of $\triangle UWY$. $Sample \ answer: \overline{UZ} \cong \overline{ZY},$ $\overline{WX} \cong \overline{XY}, \text{ and } \overline{UV} \cong \overline{VW}$
- **23.** C
- **24.** 6
- **25.** 0.5
- **26.** They all have the same length; Concurrency of Angle Bisectors of a Triangle Theorem.

Sample:



Answers for 5.3 continued For use with pages 313–317

27. Sample answer: Since $\triangle ABC$ is a right triangle, its area is $\frac{1}{2}(AB \cdot AC)$. The area of $\triangle ABC$ is also the sum of the areas of $\triangle ABD$, $\triangle ADC$, and $\triangle DBC$.

This sum is $\frac{1}{2}x(AB) + \frac{1}{2}x(AC) + \frac{1}{2}x(BC)$ or

$$\frac{1}{2}x(AB) + \frac{1}{2}x(AC) + \frac{1}{2}x(BC), \text{ or}$$

$$\frac{1}{2}x(AC + AB + BC). \text{ Setting}$$

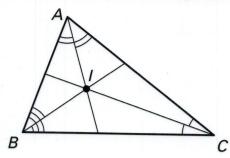
$$\frac{1}{2}(AB \cdot AC) \text{ equal to}$$

$$\frac{1}{2}x(AC + AB + BC) \text{ and solving}$$

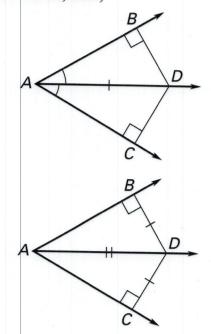
for x gives
$$x = \frac{AB \cdot AC}{AC + AB + BC}$$

5.3 Problem Solving

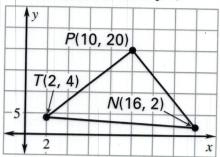
- **28.** No; G is on the angle bisector of $\angle LBR$.
- 29. At the incenter of the pond;



30. AAS; HL;



- **31. a.** Equilateral; 3; the angle bisector would also be the perpendicular bisector.
 - b. Scalene; 6; each angle bisector would be different than the corresponding perpendicular bisector.
- **32.** Angle bisector; more; no; the diameter of the inscribed circle is greater than 5 inches.
- **33.** Perpendicular bisectors; (10, 10); 100 yd; about 628 yd;



Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

34. Statements (Reasons)

- 1. $\angle BAC$ is bisected by \overline{AD} , $\overline{DB} \perp \overline{AB}$, $\overline{DC} \perp \overline{AC}$. (Given)
- 2. $\angle BAD \cong \angle CAD$ (Definition of angle bisector)
- ∠DBA and ∠DCA are right angles. (Definition of perpendicular lines)
- 4. $\angle DBA \cong \angle DCA$ (Right Angles Congruence Theorem)
- 5. $\overline{DA} \cong \overline{DA}$ (Reflexive Property of Segment Congruence)
- 6. $\triangle ABD \cong \triangle ACD$ (AAS)
- 7. $\overline{DB} \cong \overline{DC}$ (Corr. parts of $\cong \triangle$ are \cong .)

35. Statements (Reasons)

- 1. $\angle BAC$ with D in its interior, $\overline{DB} \perp \overline{AB}$, $\overline{DC} \perp \overline{AC}$, $DB = \angle C$. DC (Given)
- 2. ∠ABD and ∠ACD are right angles. (Definition of perpendicular lines)
- 3. $\triangle ABD$ and $\triangle ACD$ are right triangles. (Definition of right triangle)
- 4. $\overline{BD} \cong \overline{CD}$ (Definition of segment congruence)
- 5. $\overline{AD} \cong \overline{AD}$ (Reflextive Property of Segment Congruence)

- 6. $\triangle ABD \cong \triangle ACD$ (HL)
- 7. $\angle BAD \cong \angle CAD$ (Corr. parts of $\cong \triangle$ are \cong .)
- 8. \overrightarrow{AD} bisects $\angle ABC$. (Definition of angle bisector)

36. Statements (Reasons)

- 1. $\triangle ABC$, \overline{AD} bisects $\angle CAB$, \overline{BD} bisects $\angle CBA$, $\overline{DE} \perp \overline{AB}$, $\overline{DF} \perp \overline{BC}$, $\overline{DG} \perp \overline{CA}$. (Given)
- ∠DGC, ∠DFC, ∠DFB, and ∠DEB are right angles.
 (Definition of perpendicular lines)
- 3. $\triangle CGD$, $\triangle CFD$, $\triangle BED$, and $\triangle BFD$ are right triangles. (Definition of right triangle)
- 4. $\overline{BD} \cong \overline{BD}$, $\overline{CD} \cong \overline{CD}$ (Reflexive Property of Segment Congruence)
- 5. $\angle EBD \cong \angle FBD$ (Definition of angle bisector)
- 6. The angle bisector of $\angle ACB$ passes through point D, the incenter of $\triangle ABC$.

 (Definition of incenter)
- 7. $\angle GCD \cong \angle FCD$ (Definition of angle bisector)
- 8. $\triangle CGD \cong \triangle CFD$, $\triangle DEB \cong \triangle DFB$ (AAS)

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

36. (cont.)

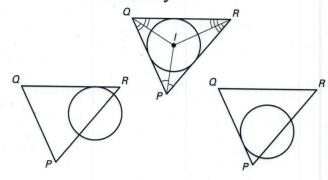
9.
$$\overline{DG} \cong \overline{DF}, \overline{DE} \cong \overline{DF}$$

(Corr. parts of $\cong \triangle$ are \cong .)

10.
$$\overline{DG} \cong \overline{DE} \cong \overline{DF}$$

(Transitive Property of Segment Congruence)

37. a. Use the Concurrency of Angle Bisectors of Triangle Theorem; if you move the circle to any other spot it will extend into the walkway.



- **b.** Yes; the incenter will allow the largest tent possible.
- **38.** Sample answer: Construct three circles exterior to the triangle, each one tangent to one side of the triangle and the other two lines. The centers of the circles are the three points.
- 5.3 Mixed Review

39. 8,
$$(-6, 2)$$
 40. $\sqrt{29}$, $(2.5, 7)$

41.
$$2\sqrt{17}$$
, (3, -4)

- **42.** $\triangle QNP \cong \triangle LNM$ by AAS. Use corr. parts of $\cong \triangle$ are \cong .
- **43.** $\triangle JFG \cong \triangle JHG$ by SSS. Use corr. parts of $\cong \triangle$ are \cong and the definition of angle bisector.
- **44.** $\triangle VWX \cong \triangle VYX$ by ASA. $\overline{WX} \cong \overline{YX}$ by corr. parts of $\cong \triangle$ are \cong . $\overline{ZX} \cong \overline{ZX}$ by the Reflexive Property of Segment Congruence. $\triangle ZWX \cong \triangle ZYX$ by SAS.

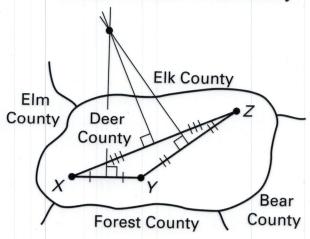
45.
$$R(0, b), T(a, 0); b, \left(\frac{a}{2}, \frac{b}{2}\right)$$

46.
$$2p, (m+p, n)$$

47.
$$R(h, h), T(h, 0); h\sqrt{2}, \left(h, \frac{h}{2}\right)$$

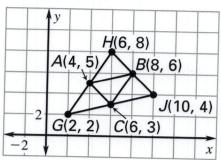
5.1–5.3 Mixed Review of Problem Solving

1. Sample answer: The park would be located outside of the county.



Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

- 2. a. incenter; angle bisectors
 - b. HL
 - **c.** 3.9 cm; $(AE)^2 + (EG)^2 = (GA)^2$ or $7^2 + (EG)^2 = 8^2$
- 3. \overrightarrow{AC} ; y = -x + 9; the y-intercepts are -6, 4, and 9. The slope of the line with 9 as the y-intercept is -1 so the equation of that line is y = -1x + 9.

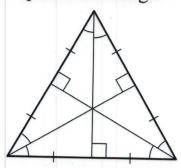


4. 9 ft;

			9
	0	0	
0	0	0	0
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
(5)	(5)	(5)	(5)
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

- **5. a.** 262 ft
 - **b.** 840 ft^2

6. Equilateral triangle



7. $\angle QPR$; $\overline{ST} \parallel \overline{PR}$ with \overline{QP} a transversal. $\angle QPR$ and $\angle QST$ are corresponding angles.