Answers for 4.8

For use with pages 276-280

4.8 Skill Practice

- 1. Subtract 1 from each x-coordinate and add 4 to each y-coordinate.
- 2. The image is congruent to the original figure.
- 3. translation
- 4. rotation
- 5. reflection
- 6. yes
- **7.** no
- **8.** yes

9.

10.

11.

12.

- **13.** $(x, y) \rightarrow (x 4, y 2)$
- **14.** $(x, y) \rightarrow (x + 6, y + 3)$
- **15.** $(x, y) \rightarrow (x + 2, y 1)$
- **16.** $(x, y) \rightarrow (x 7, y + 9)$
- 17.

A33

Answers for 4.8 continued For use with pages 276–280

rotation; 90° clockwise

not a rotation

not a rotation

A34

- 24. The red triangle rotation segment should connect corresponding angles of the triangle; the red triangle is rotated 90° clockwise.
- **25.** Yes; take any point or any line segment and rotate 360°.

- **26.** (2, 2)
- **27.** (3, 4)
- **28.** (-1, 0)
 - **29.** (2, 3)
- **30.** (3, 5)
- **31.** (13, -5)
- **32.** The corresponding sides of each triangle are congruent therefore the triangles are congruent.
- 33. \overline{UV}
- 34. \overline{AV}
- **35.** △*DST*
- **36.** △*XYC*
- **37.** m = 3, n = 11, a = 2, $g = 2, h = \frac{1}{4}$
- 4.8 Problem Solving
- **38. a.** The designer can reflect the layout over the horizontal line.
 - **b.** 4 ft
- **39.** 90° clockwise, 90° counterclockwise

40. a. Sample answer: MOM, TOT

b. Sample answer: HI, OH

- **41. a.** $(x, y) \rightarrow (x 1, y + 2)$
 - **b.** $(x, y) \to (x + 2, y 1)$
 - **c.** No; the translation needed does not match a knight's move.
- **42.** The slopes of \overline{BC} and \overline{EF} are both -1 and the slopes of \overline{AB} and \overline{DE} are both 1. Therefore. $\overline{AB} \perp \overline{BC}$ since the product of their slopes is -1. Similarly, $\overline{DE} \perp \overline{EF}$. Thus $\triangle ABC$ and $\triangle DEF$ are right triangles. Using the distance formula, $BC = EF = \sqrt{2}$ and $AC = DF = \sqrt{10}$. So, $\overline{BC} \cong \overline{EF}$, $\overline{AC} \cong \overline{DF}$. By the HL Congruence Theorem, $\triangle ABC \cong \triangle DEF$. Therefore, $\triangle DEF$ is a congruence transformation of $\triangle ABC$, described by the notation $(x, y) \rightarrow (x - 5, y + 1).$
- **43.** B

A35

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

- **44.** (1, 4), (1, 1), (3, 1); no; the final image would have a different rotation segment.
- 4.8 Mixed Review
- **45.** $-\frac{a}{b}$
- **46**. b
- **47.** a + b
- **48.** b
- **49.** 2a
- **50.** $\sqrt{a^2+b^2}$
- **51.** Sample answer: $\overline{RS} \cong \overline{UV}$, $\overline{ST} \cong \overline{VW}, \ \overline{TR} \cong \overline{WU}$

4.5-4.8 Mixed Review of **Problem Solving**

- **1. a.** reflection in the y-axis
 - **b.** rotation of 90° counterclockwise
 - **c.** reflection in the x-axis
 - d. Rotate figure A 90° clockwise and 180°.
- 2. No; the given angle is not the included angle.
- 3. The length of the side forming the 34° angle with side measuring 8 centimeters, the angle the third side makes with the side measuring 8 centimeters, or the angle the third side makes with the side forming the 34° angle with the side measuring 8 centimeters

- **4.** Yes; yes; $\angle ACD$ and $\angle BCE$ are vertical angles so they are congruent which makes $\triangle ACD \cong \triangle BCE$ by SAS. Since $\triangle ACD \cong \triangle BCE, \overline{AD} \cong \overline{BE}$ by corr. parts of $\cong \triangle$ are \cong .
- **5. a.** In $\triangle ABC$, it is given that $\overline{AB} \cong \overline{CB}$, therefore $\angle BCE \cong \angle BAE$ by the Base Angles Theorem.
 - **b.** Sample answer: $\triangle ABE \cong \triangle CBE$ by AAS. $\overline{CE} \cong \overline{AE}$ by corr. parts of \cong & are \cong . \triangle $FAE \cong \triangle DCE$ by ASA and therefore $\overline{AF} \cong \overline{CD}$ by corr. parts of \cong \triangle are \cong
- **6.** 7;

