4.7 Skill Practice

- **1.** The angle formed by the legs is the vertex angle.
- 2. They are congruent.
- 3. A, D; Base Angles Theorem
- **4.** A, BEA; Base Angles Theorem
- **5.** \overline{CD} , \overline{CE} ; Converse of Base Angles Theorem
- **6.** \overline{EB} , \overline{EC} ; Converse of Base Angles Theorem
- **7.** 12
- **8.** 16
- **9.** 60°

10. 106°

- **11.** 20
- **12.** 6
- **13.** 8
- **14.** \overline{AC} is not congruent to \overline{BC} , $\overline{AB} \cong \overline{BC}$, which makes BC = 5.
- **15.** 39, 39 **16.** 48, 70 **17.** 45, 5
- **18.** No; an isosceles triangle can have an obtuse or a right vertex angle, which would make it an obtuse or a right triangle.
- **19.** B

- **20.** 50, $\frac{1}{2}$; first find y by using the Triangle Sum Theorem followed by the Base Angles Theorem. Next find x by using the Definition of linear pair followed by the Base Angles Theorem.
- 21. There is not enough information to find x or y. We need to know the measure of one of the vertex angles.
- 22. ± 4 , 4; since $y + 12 = 3x^2 32$ and $3x^2 32 = 5y 4$, use the Transitive Property of Equality and set y + 12 = 5y 4 to solve for y and use the value of y to solve for x.
- **23.** 16 ft **24.** 17 in. **25.** 39 in.
- **26.** Not possible; the isosceles triangle with legs of length 7 cannot contain two 90° angles.
- 27. possible
- **28.** Not possible; x = y forms parallel segments which cannot be two sides of a triangle.
- 29. possible

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

- **30.** Isosceles; two of the angles have the same measure, so two of the sides have the same length by the Converse of the Base Angles Theorem.
- **31.** $\triangle ABD \cong \triangle CBD$ by SAS making $\overline{BA} \cong \overline{BC}$ because corresponding parts of congruent triangles are congruent.
- **32.** 150; one triangle is equiangular and the other two triangles are congruent making x° the measure of the third angle in the center. x + x + 60 = 360.
- **33.** 60, 120; solve the system x + y = 180 and 180 + 2x - y = 180.
- **34.** 90, about 8.66; one triangle is equiangular, one is isosceles, and the third one is a right triangle. Use the equiangular and isosceles triangles to establish the right triangle and then use the Pythagorean Theorem.
- **35.** 50° , 50° , 80° , 65° , 65° , 50° ; there are two distinct exterior angles. If the angle is supplementary to the base angle, the base angles measure 50°. If the angle is supplementary to the vertex angle, then the base angles measure 65°.

- **36.** Since $\angle A$ is the vertex angle of isosceles $\triangle ABC$, $\angle B$ must be congruent to $\angle C$. Since 2 times any angle measure will always be an even number, an even number will be subtracted from 180 to find $m \angle A$. 180 minus an even number will always be an even number, therefore $m \angle A$ must be even
- **37.** 180 x, 180 x, 2x 180; $\frac{x}{2}$, $\frac{x}{2}$, 180 - x, 0 < x < 180
- 4.7 Problem Solving
- **38.** 79, 22
- 39. 5 cm 5 cm 60° 60 5 cm
- **40**. 10°
- **41. a.** $\angle A$, $\angle ACB$, $\angle CBD$, and ∠CDB are congruent and $\overline{BC} \cong \overline{CB}$ making $\triangle ABC \cong \triangle BCD$ by AAS.
 - **b.** $\triangle ABC$, $\triangle BCD$, $\triangle CDE$, $\triangle DEF$, $\triangle EFG$
 - **c.** $\angle BCD$, $\angle CDE$, $\angle DEF$, $\angle EFG$

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

42. a. The sides of each new triangle

- are the sum of the same number of congruent segments.
 - **b.** 1 square unit, 4 square units, 9 square units, 16 square units
 - c. 1², 2², 3² . . . ; 49 square units; the numbers representing the areas are the sequence of perfect squares.
- **43.** 90°, 45°, 45°
- **44.** If a triangle is equilateral it is also isosceles, using these two facts it can be shown that the triangle is equiangular.
- **45.** Statements (Reasons)
 - 1. $\triangle ABC$ with $\angle B \cong \angle C$ (Given)
 - 2. Draw altitude \overline{AD} . (Two points determine a line.)
 - 3. $m \angle ADC = m \angle ADB = 90^{\circ}$ (Definition of altitude)
 - 4. $\angle ADC \cong \angle ADB$ (All right angles are congruent.)
 - 5. $\overline{AD} \cong \overline{AD}$ (Reflexive Property of Congruence)
 - $6. \triangle ADB \cong \triangle ADC \qquad (AAS)$
 - 7. $\overline{AB} \cong \overline{AC}$ (Corr. parts of $\cong \triangle$ are \cong .)

- 46. a. Statements (Reasons)
 - 1. $\overline{AB} \cong \overline{CD}$, $\overline{AE} \cong \overline{DE}$, $\angle BAE \cong \angle CDB$ (Given)
 - $2. \triangle ABE \cong \triangle DCE \qquad (SAS)$
 - **b.** $\triangle AED$, $\triangle BEC$
 - c. $\angle EDA$, $\angle EBC$, $\angle ECB$
 - **d.** No; $\triangle AED$ and $\triangle BEC$ remain isosceles triangles with $\angle BEC \cong \angle AED$.
- **47.** No; $m \angle 1 = 50^{\circ}$, so $m \angle 2 = 50^{\circ}$. $\angle 2$ corresponds to the angle measuring 45° , therefore p is not parallel to q.
- **48.** Yes; $m \angle ABC = 50^{\circ}$ and $m \angle BAC = 50^{\circ}$. The Converse of Base Angles Theorem guarantees that $\overline{AC} \cong \overline{BC}$ making $\triangle ABC$ isosceles.
- 49. Statements (Reasons)
 - 1. $\triangle ABC$ is equilateral, $\angle CAD \cong \angle ABE \cong \angle BCF$. (Given)
 - 2. $m \angle CAD = m \angle ABE =$ $m \angle BCF$ (Definition of angle congruence)

49. (cont.)

Statements (Reasons)

- 3. $m \angle CAD + m \angle DAB =$ $m \angle CAB$, $m \angle ABE + m \angle EBC =$ $m \angle ABC$, $m \angle BCF + m \angle FCA =$ $m \angle BCA$ (Angle Addition Postulate)
- 4. $m \angle CAB = m \angle ABC = m \angle BCA$ (Base Angles Theorem)
- 5. $m \angle CAD + m \angle DAB =$ $m \angle ABE + m \angle EBC =$ $m \angle BCF + m \angle FCA$ (Transitive Property of Equality)
- 6. $m \angle CAD + m \angle DAB =$ $m \angle CAD + m \angle EBC =$ $m \angle CAD + m \angle FCA$ (Substitution Property of Equality)
- 7. $m \angle DAB = m \angle EBC =$ $m \angle FCA$ (Subtraction
 Property of Equality)
- 8. $\angle DAB \cong \angle EBC \cong \angle FCA$ (Definition of angle congruence)
- $9. \triangle ACF \cong \triangle CBE \cong \triangle BAD$ (ASA)

- 10. $\angle BEC \cong \angle ADB \cong \angle CFA$ (Corr. parts of $\cong \&$ are \cong .)
- 11. $m \angle BEC = m \angle ADB =$ $m \angle CFA$ (Definition of angle congruence)
- 12. ∠BEC and ∠DEF, ∠ADB and ∠EDF, ∠CFA and ∠DFE are linear pairs and are supplementary. (Definition of linear pair)
- 13. $\angle DEF \cong \angle EDF \cong \angle DFE$ (Congruent Supplements Theorem)
- 14. $\triangle DEF$ is equiangular. (Definition of equiangular triangle)
- 15. $\triangle DEF$ is equilateral. (Converse of Base Angles Theorem)
- **50.** Sample answer: Choose point $p(x, y) \neq (2, 2)$ and set PT = PU. Solve the equation

$$\sqrt{x^2 + (y - 4)^2} =$$

$$\sqrt{(x - 4)^2 + y^2} \text{ and get}$$

$$y = x. \text{ The point } (2, 2) \text{ is excluded}$$
because it is a point on \overrightarrow{TU} .

51. 6, 8, 10; set 3t = 5t - 12, 3t = t + 20, 5t - 12 = t + 20 and solve for t.

- 4.7 Mixed Review
- **52.** III
- **53.** II
- **54.** IV
- **55.** -11, -4, 1
- **56.** x, y = 3x
- 57. congruent
- 58. congruent
- 59. not congruent
- 60. congruent