Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

4.6 Skill Practice

- 1. congruent
- **2.** Sample answer: You are unable to cross the river; measuring the distance across a lake.
- **3.** $\triangle CBA$, $\triangle CBD$; SSS
- **4.** $\triangle QPR$, $\triangle TPS$; SAS
- **5.** $\triangle JKM$, $\triangle LKM$; HL
- **6.** $\triangle CAD$, $\triangle BDA$; AAS
- **7.** $\triangle JNH$, $\triangle KLG$; AAS
- **8.** $\triangle VRT$, $\triangle QVW$; AAS
- **9.** The angle is not the included angle; the triangles cannot be said to be congruent.
- 10. Show $\triangle VST \cong \triangle TUV$ by SSS since $\overline{VT} \cong \overline{TV}$ by the Reflexive Property of Congruence. Then $\angle S \cong \angle U$ because corresponding parts of congruent triangles are congruent.
- 11. Show $\triangle NML \cong \triangle PQL$ by AAS since $\angle NLM \cong \angle PLQ$ by the Vertical Angles

 Congruence Theorem. Then $\overline{LM} \cong \overline{LQ}$ because corresponding parts of congruent triangles are congruent.

12. Corresponding diagonals are corresponding sides of two congruent triangles. *Sample:*

- **13.** 20, 120, \pm 6
- 14. B
- **15.** Show $\triangle KFG \cong \triangle HGF$ by AAS, which gives you $\overline{HG} \cong \overline{KF}$. This along with $\angle FJK \cong \angle GJH$ by vertical angles gives you $\triangle FJK \cong \triangle GJH$. Therefore $\angle 1 \cong \angle 2$.
- **16.** $\triangle AEB \cong \triangle DEC$ by AAS which makes $\overline{EC} \cong \overline{EB}$, thus making $\triangle EBC$ an isosceles triangle, which proves $\angle 1 \cong \angle 2$.
- 17. Show $\triangle STR \cong \triangle QTP$ by ASA using the givens and vertical angles STR and QTP. Since $\overline{PT} \cong \overline{RT}$ and using vertical angles PTS and RTQ, $\triangle PTS \cong \triangle RTQ$ by SAS, which gives you $\angle 1 \cong \angle 2$.

Answers for 4.6 continued

For use with pages 259–263

- **18.** $\overline{AC} \parallel \overline{FD}$ by the Perpendicular Transversal Theorem which gives you $\angle CED \cong \angle ECB$ and $\angle BEC \cong \angle ECD$. From this you have $m \angle CED + m \angle DCE = 90^\circ$ making $m \angle 2 = 90^\circ$. A similar argument follows for $\angle 1$.
- **19.** Show $\triangle KNP \cong \triangle MNP$ by SSS. Now $\angle KPL \cong \angle MPL$ and $\overline{PL} \cong \overline{PL}$ leads to $\triangle LKP \cong \triangle LMP$ by SAS, which gives you $\angle 1 \cong \angle 2$.
- 20. Since $\triangle TVY \cong \triangle UXZ$ by SAS you have $\overline{YT} \cong \overline{ZU}$. Since $\overline{YT} \parallel \overline{ZU}$, you have $\angle YTW \cong \angle UZW$ and $\angle TYW \cong \angle ZUW$ by the Alternate Interior Angles Theorem, making $\triangle TYW \cong \triangle ZUW$ by ASA. Using corresponding parts and vertical angles, you have $\triangle TWU \cong \triangle ZWY$ by SAS, making $\angle 1 \cong \angle 2$.
- **21.** The triangles are congruent by SSS.
- **22.** The triangles are congruent by SSS.

23. Statements (Reasons)

1.
$$\angle T \cong \angle U$$
, $\angle Z \cong \angle X$, $\overline{YZ} \cong \overline{YX}$ (Given)

$$2. \triangle TYZ \cong \triangle UYX \qquad (AAS)$$

3.
$$\angle TZY \cong \angle UYZ$$
 (Corr. parts of $\cong \triangle$ are \cong .)

4.
$$m \angle TYZ = m \angle UYX$$
 (Definition of angle congruence)

5.
$$m \angle TYW + m \angle WYZ =$$

 $m \angle TYZ$, $m \angle TYW +$
 $m \angle VYX = m \angle UYX$
(Angle Addition Postulate)

6.
$$m \angle TYW + m \angle WYZ =$$
 $m \angle TYW + m \angle VYX$
(Transitive Property of Equality)

7.
$$m \angle WYZ = m \angle VYX$$
(Subtraction Property of Equality)

8.
$$\angle WYZ \cong \angle VYX$$
 (Definition of angle congruence)

Answers for 4.6 continued

For use with pages 259-263

- **24.** Statements (Reasons)
 - 1. $\overline{FG} \cong \overline{HG} \cong \overline{JG} \cong \overline{KG}$, $\overline{JM} \cong \overline{KM} \cong \overline{LM} \cong \overline{NM}$

(Given)

- 2. $\angle FGJ \cong \angle HGK$, $\angle JML \cong \angle KMN$ (Vertical Angles Congruence Theorem)
- $3. \triangle FGJ \cong \triangle HGK, \\ \triangle JML \cong \triangle KMN$ (SAS)
- 4. $\overline{FJ} \cong \overline{HK}$, $\overline{JL} \cong \overline{KN}$ (Corr. parts of $\cong \triangle$ are \cong .)
- 5. FJ = HK, JL = KN (Definition of segment congruence)
- 6. FJ + JL = HK + KN(Addition Property of Equality)
- 7. FL = HN (Segment Addition Postulate)
- 8. $\overline{FL} \cong \overline{HN}$ (Definition of segment congruence)
- 25. Statements (Reasons)
 - 1. $\angle PRU \cong \angle QVS, \overline{RS} \cong \overline{UV},$ $\angle TSU \cong \angle USW \cong$ $\angle TUS \cong \angle SUW$ (Given)
 - 2. $\overline{SU} \cong \overline{SU}$ (Reflexive Property of Congruence)
 - 3. SU = SU, RS = UV (Definition of segment congruence)
 - 4. RS + SU = SU + UV(Addition Property of Equality)

- 5. RU = SV (Segment Addition Postulate)
- 6. $\overline{RU} \cong \overline{SV}$ (Definition of segment congruence)
- $7. \triangle QSV \cong \triangle PUR \qquad (ASA)$
- 8. $\overline{PU} \cong \overline{QS}$, $\angle RPU \cong \angle VQS$ (Corr. parts of $\cong \triangle$ are \cong .)
- 9. $m \angle TSU + m \angle USW =$ $m \angle TSW$, $m \angle TUS +$ $m \angle SUW = m \angle TUW$ (Angle Addition Postulate)
- 10. $m \angle TSU = m \angle USW = m \angle TUS = m \angle SUW$ (Definition of angle congruence)
- 11. $m \angle TSU + m \angle TSU =$ $m \angle TSW, m \angle TSU +$ $m \angle TSU = m \angle TUW$ (Substitution Property of Equality)
- 12. $m \angle TSW = m \angle TUW$ (Transitive Property of Equality)
- 13. $\angle TSW \cong \angle TUW$ (Definition of angle congruence)
- 14. $\triangle PUX \cong \triangle QSY$ (ASA)

For use with pages 259-263

26. Statements (Reasons)

- 1. $\overline{AD} \cong \overline{GD} \cong \overline{FD} \cong \overline{BD}$ (Given)
- 2. $\angle ADC \cong \angle GDE$, $\angle FDC \cong \angle BDE$ (Vertical Angles Congruence Theorem)
- $3. \ m \angle ADC = m \angle GDE.$ $m \angle FDC = m \angle BDE$ (Definition of angle congruence)
- $4. \ m \angle ADC + m \angle FDC =$ $m \angle ADF$, $m \angle BDE +$ $m \angle GDE = m \angle GDB$ (Angle Addition Postulate)
- $5. \, m \angle ADC + m \angle FDC =$ $m \angle GDB$ (Substitution Property of Equality)
- 6. $m \angle ADF = m \angle GDB$ (Transitive Property of Equality)
- 7. $\angle ADF \cong \angle GDB$ (Definition of angle congruence)
- 8. $\triangle ADF \cong \triangle GDB$ (SAS)
- 9. $\angle FAD \cong \angle BGD$ (Corr. parts of \cong & are \cong .)
- 10. $\triangle ADC \cong \triangle GDE$ (ASA)
- 11. $\overline{AC} \cong \overline{GE}$ (Corr. parts of $\cong \triangle$ are \cong .)
- **27.** $\triangle ABC$, $\triangle NPQ$, $\triangle DEF$, and $\triangle GHJ$

4.6 Problem Solving

- **28.** Because $\overline{CD} \perp \overline{DE}$ and $\overline{CD} \perp \overline{AC}$, $\angle D$ and $\angle C$ are congruent right angles. The vertical angles, $\angle DBE$ and $\angle CBA$, are congruent. So, $\triangle DBE \cong \triangle CBA$ by ASA. Then because corresponding parts of congruent triangles are congruent, $\overline{AC} \cong \overline{DE}$. So, you can find the distance AC across the canyon by measuring DE.
- 29. Statements (Reasons)
 - 1. $\overline{PQ} \parallel \overline{VS}, \overline{QU} \parallel \overline{ST}, \overline{PQ} \cong \overline{VS}$ (Given)
 - 2. $\angle QPU \cong \angle SVT$, $\angle QUP \cong \angle STV$ (Corresponding Angles Postulate)
 - $3. \triangle PQU \cong \triangle VST$ (AAS)
 - $4. \angle Q \cong \angle S$ (Corr. parts of $\cong \triangle$ are \cong .)
- **30.** 11.2 m. Sample answer: $\triangle ABC \cong \triangle EDC$ thus $\overline{ED} \cong \overline{AB}$. Since $ED \approx 11.2$, then $AB \approx 11.2$
- **31**. A

For use with pages 259–263

32. Statements (Reasons)

- 1. $\overline{AB} \cong \overline{AC}$, $\overline{BG} \cong \overline{CG}$ (Given)
- 2. $\overline{AG} \cong \overline{AG}$ (Reflexive Property of Segment Congruence)
- $3. \triangle ACG \cong \triangle ABG$ (SSS)
- $4. \angle CAG \cong \angle BAG$ (Corr. parts of \cong \triangle are \cong .)
- 5. \overrightarrow{AG} bisects $\angle A$. (Definition of angle bisector)
- **33.** No; the given angle is not an included angle.
- **34.** Yes; $\overline{AE} \cong \overline{CE}$ by Corr. parts of \cong \triangle are \cong , $\angle CEB \cong \angle ABE$ by the Right Angle Congruence Theorem and $\overline{BE} \cong \overline{BE}$ so $\triangle BAE \cong \triangle BCE$. By Corr. parts of \cong & are \cong , $\overline{AB} \cong \overline{BC}$.
- **35.** Yes; $\angle BDA \cong \angle BDC$, $\overline{AD} \cong \overline{CD}$ and $\overline{BD} \cong \overline{BD}$. By SAS, $\triangle ABD \cong \triangle CBD$. By Corr. parts of $\cong \mathbb{A}$ are \cong , $\overline{AB} \cong \overline{BC}$.
- **36. a.** Sample answer: $\overline{AB} \cong \overline{AB}$, $\angle BAC \cong \angle BAD$, $\angle ACB \cong \angle ADB$; AAS
 - **b.** Sample answer: $\triangle BAC \cong \triangle BAD$ therefore $\overline{BC} \cong \overline{BD}$.

37. Statements (Reasons)

- 1. $\overline{MN} \cong \overline{KN}$, $\angle PMN \cong \angle NKL$ (Given)
- $2. \angle MNP \cong \angle KNL$ (Vertical Angles Congruence Theorem)
- $3. \triangle PMN \cong \triangle LKN$ (ASA)
- 4. $\overline{MP} \cong \overline{KL}$, $\angle MPJ \cong \angle KLQ$ (Corr. parts of $\cong \triangle$ are \cong .)
- 5. $\overline{MJ} \cong \overline{PN}, \overline{KQ} \cong \overline{LN}$ (Given in diagram)
- 6. $\angle KQL$ and $\angle MJP$ are right angles. (Perpendicular lines intersect to form four right angles.)
- 7. $\angle KQL \cong \angle MJP$ (Right Angles Congruence Theorem)
- 8. $\triangle MJP \cong \triangle KQL$ (AAS)
- $9. \angle 1 \cong \angle 2$ (Corr. parts of \cong \triangle are \cong .)

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

38. Statements (Reasons)

- 1. $\overline{TS} \cong \overline{TV}, \overline{SR} \cong \overline{VW}$ (Given)
- 2. TS = TV, SR = VW (Definition of segment congruence)
- 3. TS + SR = TR, TV + VW = TW (Segment Addition Postulate)
- 4. TV + SR = TR, TV + SR = TW (Substitution Property of Equality)
- 5. TR = TW (Transitive Property of Equality)
- 6. $\overline{TR} \cong \overline{TW}$ (Definition of segment congruence)
- 7. $\angle RTV \cong \angle WTS$ (Reflexive Property of Congruence)
- $8. \triangle RTV \cong \triangle WTS \tag{SAS}$
- 9. $\overline{RV} \cong \overline{WS}$ (Corr. parts of \cong \triangle are \cong .)
- 10. $\overline{SV} \cong \overline{VS}$ (Reflexive Property of Congruence)
- $11. \triangle RSV \cong \triangle WVS \tag{SSS}$
- 12. $\angle VSW \cong \angle SVR$, $\angle TSW \cong \angle TVR$ (Corr. parts of $\cong \triangle$ are \cong .)
- 13. $m \angle VSW = m \angle SVR$, $\angle TSW \cong \angle TVR$ (Definition of angle congruence)

14.
$$m \angle 1 + m \angle VSW = m \angle TSW$$
,
 $m \angle 2 + m \angle SVR = m \angle TVR$
(Angle Addition Postulate)

- 15. $m \angle 1 + m \angle VSW =$ $m \angle 2 + m \angle SVR$ (Transitive Property of Equality)
- 16. $m \angle 1 + m \angle VSW = m \angle 2 + m \angle VSW$ (Substitution Property of Equality)
- 17. $m \angle 1 = m \angle 2$ (Subtraction Property of Equality)
- 18. $\angle 1 \cong \angle 2$ (Definition of angle congruence)

39. Statements (Reasons)

- 1. $\overline{BA} \cong \overline{BC}$, D and E are midpoints, $\angle A \cong \angle C$, $\overline{DF} \cong \overline{EF}$. (Given)
- 2. $\overline{BD} \cong \overline{DA}$, $\overline{BE} \cong \overline{EC}$ (Definition of midpoint)
- 3. BD = DA, BE = EC (Definition of segment congruence)
- 4. BD + DA = BE + EC(Segment Addition Postulate)
- 5. BD + BD = BE + BE, DA + DA = EC + EC(Substitution Property of Equality)

39. (cont.)

Statements (Reasons)

- 6. 2BD = 2BE, 2DA = 2EC (Simplify.)
- 7. BD = BE, DA = EC (Division Property of Equality)
- 8. $\overline{BD} \cong \overline{BE}$, $\overline{DA} \cong \overline{EC}$ (Definition of segment congruence)
- 9. Construct \overline{BJ} containing point F. (Construction)
- 10. $\overline{BF} \cong \overline{BF}$ (Reflexive Property of Congruence)
- $11. \triangle BFD \cong \triangle BFE \tag{SSS}$
- 12. $\angle BFE \cong \angle BFD$, $\angle BEF \cong \angle BDF$ (Corr. parts of $\cong \&$ are \cong .)
- 13. $\angle BFE \cong \angle GFJ$, $\angle BFD \cong \angle HFJ$ (Vertical Angles Congruence Theorem)
- $14. \angle GFJ \cong \angle HFJ \qquad (ASA)$
- 15. $\overline{FJ} \cong \overline{FJ}$ (Reflexive Property of Segment Congruence)
- 16. ∠BEF and ∠CEG, ∠BDF and ∠ADH form linear pairs. (Transitive Property of Equality)
- 17. $\angle CEG \cong \angle ADH$ (Congruent Supplements Theorem)

- 18. $\triangle CEG \cong \triangle ADH$ (ASA)
- 19. $\angle EGJ \cong \angle DHJ$ (Corr. parts of $\cong \&$ are \cong .)
- $20. \triangle GFJ \cong \triangle HFJ \qquad (AAS)$
- 21. $\overline{FG} \cong \overline{FH}$ (Corr. parts of $\cong \triangle$ are \cong .)
- 40. Statements (Reasons)
 - 1. $\overline{AB} \parallel \overline{EC}, \overline{AC} \parallel \overline{ED}, \overline{AB} \cong \overline{ED},$ $\overline{AC} \cong \overline{EC}$ (Given)
 - 2. $\angle DEC \cong \angle ECA$, $\angle ECA \cong \angle BAC$ (Alternate Interior Angles Congruence Theorem)
 - 3. $\angle DEC \cong \angle BAC$ (Transitive Property of Angle Congruence)
 - $4. \triangle DEC \cong \triangle BAC \qquad (SAS)$
 - 5. $\overline{BC} \cong \overline{CD}$, $\angle BCA \cong \angle DCE$ (Corr. parts of $\cong \triangle$ are \cong .)
 - 6. $m \angle BAC = m \angle DCE$ (Definition of congruent angles)
 - 7. $m \angle BCA + m \angle ACE =$ $m \angle DCE + m \angle ACE$ (Addition Property of Equality)
 - 8. $m \angle BCE = m \angle DCA$ (Angle Addition Postulate)
 - 9. $\angle BCE \cong \angle DCA$ (Definition of congruent angles)

Answers for 4.6 continued For use with pages 259-263

40. (cont.)

Statements (Reasons)

10.
$$\triangle BCE \cong \triangle DCA$$

(SAS)

11.
$$\overline{AD} \cong \overline{EB}$$

(Corr. parts of

 \cong \triangle are \cong .)

4.6 Mixed Review

41. one

42. one

43. one

44. 18°, 72°, 90°; right triangle

45. 23°, 115°, 42°; obtuse triangle

46. 28°, 66°, 86°; acute triangle

Quiz AAS

6) Use Vertesthin & AAS to show DOPLY DNML. USE CACTO to show QL = NL