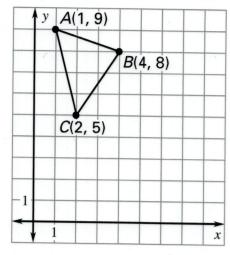

- **1.** C
- **2.** E
- **3.** F


- **4.** A
- **5.** B
- **6.** D
- 7. No; in a right triangle, the other two angles are complementary so they are both less than 90°.
- 8. isosceles, right
- 9. equilateral, equiangular
- 10. scalene, obtuse
- 11. isosceles; right triangle

12. isosceles; not a right triangle

13. scalene; not a right triangle

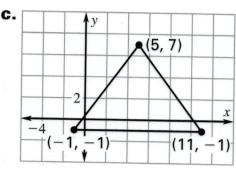
- 14. 60; equiangular
- **15.** 30; right
- **16.** 134; acute
- **17.** 92°
- **18.** 114°
- **19.** 158°
- **20.** Set 3x + 2x = 90 and solve for x. Then find the values of 3x and 2x.
- **21.** 50°
- **22.** 130°
- **23.** 50°

- **24.** 130°
- **25.** 40°
- **26.** 30°
- **27.** $m \angle P = 45^{\circ}, m \angle Q = 90^{\circ}, m \angle R = 45^{\circ}$
- **28.** $m \angle E = 60^{\circ}, m \angle F = 90^{\circ}, m \angle G = 30^{\circ}$
- **29.** Isosceles does not guarantee the third side is congruent to the two congruent sides; so if $\triangle ABC$ is equilateral, then it is isosceles as well.

vers for 4.1 For use with pages 221-224

- **30.** The measure of the exterior angle is equal to the sum of the measures of the two non-adjacent interior angles; $m \angle 1 = 80^{\circ} + 50^{\circ} = 130^{\circ}$.
- **31.** B
- **32.** 43, 32

33. 118, 96


34. 85, 65

35. 26, 64

36. 62, 28

37. 35, 37

- 38. No. Sample answer: In a right triangle, the two acute angles are complementary. So, one of the acute angle measures can be as small as desired, while the other angle measure is less than 90°. The largest angle is the right angle, which measures 90°, so the triangle does not need to be obtuse.
- **39.** a. Sample answer: They will always form a triangle unless they intersect in one point, or unless at least two lines are parallel.
 - **b.** Sample answer: 0, 5

isosceles

4.1 Problem Solving

- 40. scalene: acute
- **41.** 2 in.; 60°; in an equilateral triangle all sides have the same length $\left(\frac{6}{3}\right)$. In an equiangular triangle the angles always measure 60°.
- 42. Bend the strip again at 7 inches or bend the strip again at 8 inches.
- **43.** C

44. 115°

45. 115°

46. 130°

47. 65°

- **48.** Statements (Reasons)
 - 1. $\triangle ABC$ is a right triangle.

(Given)

 $2. \, m \angle C = 90^{\circ}$

(Definition of right angle)

 $3. m \angle A + m \angle B + m \angle C = 180^{\circ}$ (Triangle Sum Theorem) For use with pages 221-224

48. (cont.)

4.
$$m \angle A + m \angle B + 90^{\circ} = 180^{\circ}$$

(Substitution Property of Equality)

- 5. $m \angle A + m \angle B = 90^{\circ}$ (Subtraction Property of Equality)
- 6. $\angle A$ and $\angle B$ are complementary.

(Definition of complementary angles)

49. a.
$$2\sqrt{2x} + 5\sqrt{2x} + 2\sqrt{2x} = 180$$

- **b.** 40° , 100° , 40°
- c. obtuse
- **50.** Statements (Reasons)
 - 1. $\triangle ABC$, exterior $\angle BCD$

(Given)

- 2. $m \angle ACD = 180^{\circ}$ (Definition of straight angle)
- $3. \, m \angle ACB + m \angle BCD = \\ m \angle ACD$

(Angle Addition Postulate)

4.
$$m \angle ACB + m \angle BCD = 180^{\circ}$$

(Substitution Property of Equality)

5.
$$m \angle BCD = 180^{\circ} - m \angle ACB$$

(Subtraction Property of Equality)

6.
$$m \angle ACB + m \angle CBA + m \angle BAC = 180^{\circ}$$
(Triangle Sum Theorem)

7.
$$m \angle CBA + m \angle BAC =$$
 $180^{\circ} - m \angle ACB$
(Subtraction Property of Equality)

$$8. \ m \angle BCD = m \angle CBA + m \angle BAC$$

(Transitive Property of Equality)

- **51.** Sample answer: They both reasoned correctly, but their initial plan was incorrect. The measure of the exterior angle should be 150°.
- **52. a.** 8, 9

b. one value

53. Statements (Reasons)

1.
$$\triangle ABC$$
, $\overline{AB} \parallel \overline{CD}$ (Given)

2.
$$m \angle ACE = 180^{\circ}$$
 (Definition of straight angle)

3.
$$m \angle 3 + m \angle 4 + m \angle 5 = m \angle ACE$$
(Angle Addition Postulate)

4.
$$m \angle 3 + m \angle 4 + m \angle 5 = 180^{\circ}$$
 (Substitution)

5.
$$\angle 1 \cong \angle 5$$
 (Corresponding Angles Postulate)

6. $m \angle 1 = m \angle 5$ (Definition of congruent angles)

$$7. \angle 2 \cong \angle 4$$

(Alternate Interior Angle Theorem)

8.
$$m \angle 2 = m \angle 4$$
 (Definition of congruent angles)

9.
$$m \angle 3 + m \angle 2 + m \angle 1 = 180^{\circ}$$
(Substitution Property of Equality)

4.1 Mixed Review