
Answers for 3.3

For use with pages 165-170

3.3 Skill Practice

1. Sample:

 $\angle 1$ and $\angle 8$, $\angle 2$ and $\angle 7$

transversal, alternate interior angles are congruent if and only if the lines are parallel; given two lines cut by a transversal, alternate exterior angles are congruent if and only if the lines are parallel; given two lines cut by a transversal, consecutive interior angles are supplementary if and only if the lines are parallel.

3. 40

4. 60

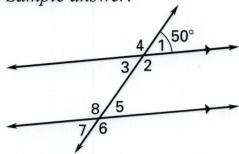
5. 15

6. 90

7. 60

8. 20

- **9.** The student believes that x = y but there is no indication that they are equal.
- **10.** yes; Alternate Interior Angles Converse
- **11.** yes; Alternate Exterior Angles Converse


12. no

13. yes; Corresponding Angles Converse

14. no

15. yes; Alternate Exterior Angles Converse

16. Sample answer:

 $m \angle 3 = 50^{\circ}$, Vertical Angles Congruence Theorem; $m \angle 4 = 130^{\circ}$, Linear Pair Postulate;

 $m \angle 2 = 130^{\circ}$, Vertical Angles Congruence Theorem;

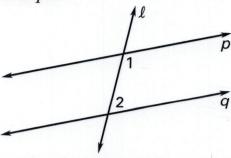
 $m\angle 8 = 130^{\circ}$, Alternate Interior Angles Theorem;

 $m \angle 6 = 130^{\circ}$, Vertical Angles

Congruence Theorem;

 $m \angle 5 = 50^{\circ}$, Linear Pair

Postulate;


 $m \angle 7 = 50^{\circ}$, Vertical Angles

Congruence Theorem

Answers for 3.3 continued For use with pages 165-170

17. a.
$$m \angle DCG = 115^{\circ}$$
, $m \angle CGH = 65^{\circ}$

- **b.** They are consecutive interior angles and they are supplementary.
- c. yes; Consecutive Interior **Angles Converse**
- **18. a.** *Sample:*

- **b.** Given: $\angle 1$ and $\angle 2$ are supplementary, Prove: $p \parallel q$
- 19. yes; Consecutive Interior Angles Converse
- 20. yes; Alternate Exterior Angles Converse
- 21. no
- **22.** The student assumed the congruent angles were alternate interior angles between \overrightarrow{AD} and \overrightarrow{BC} . By the Alternate Interior Angles Converse; $\overrightarrow{AB} \parallel \overrightarrow{DC}$.
- **23.** D

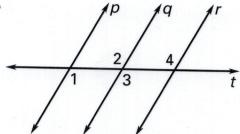
- 24. 1 angle. Sample answer: Using the Vertical Angles Congruence Theorem, the Linear Pair Postulate, and the Alternate Interior Angles Theorem the other angle measures can be found.
- **25.** *Sample answer:* $\angle 1 \cong \angle 4$ therefore $\angle 4$ and $\angle 7$ are supplementary. Lines j and k are parallel by the Consecutive Interior Angles Converse.
- **26.** $\overrightarrow{EA} \parallel \overrightarrow{HC}$; \overrightarrow{EB} is not parallel to \overrightarrow{HD} , $\angle GHC \cong \angle HEA$, $\angle GHD$ is not congruent to $\angle HEB$.
- 27. a. 1 line
 - **b.** an infinite number of lines
 - c. 1 plane
- **28**. a. 54
- **b.** 47.5
- **c.** No, Sample answer: For p to be parallel to q, x = 54, then y = 63 because of the linear pair formed, but in order for r and s to be parallel, y must equal 47.5.

3.3 Problem Solving

- 29. Alternate Interior Angles Converse Theorem
- **30.** Corresponding Angles Converse

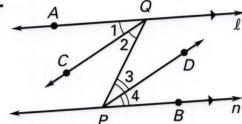
Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

- 31. 3. Substitution
 - 4. Definition of supplementary angles
 - 5. Consecutive Interior Angles Converse
- **32.** Alternate Exterior Angles Converse Theorem
- parallel to E 19th by the Corresponding Angles Converse Postulate. E 19th is parallel to E 18th by the Alternate Exterior Angles Converse Theorem. E 18th is parallel to E 17th by the Alternate Interior Angles Converse Theorem. E 18th is parallel to E 17th by the Alternate Interior Angles Converse Theorem. They are all parallel by the Transitive Property of Parallel Lines.
- **34.** Statements (Reasons)
 - 1. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$ (Given)
 - 2. $\angle 2 \cong \angle 3$ (Vertical Angles Congruence Theorem)
 - $3. \angle 1 \cong \angle 4$


(Transitive Property of Angle Congruence)

4. $\overline{AB} \parallel \overline{CD}$ (Alternate Interior Angles Converse Theorem)

- **35.** Statements (Reasons)
 - 1. $a \parallel b, \angle 2 \cong \angle 3$ (Given)
 - ∠2 and ∠4 are supplementary.
 (Consecutive Interior Angles Theorem)
 - 3. ∠3 and ∠4 are supplementary. (Substitution)
 - $d c \parallel d$ (Consecutive Interior Angles Converse Theorem)
- **36.** Statements (Reasons)
 - 1. $\angle 2 \cong \angle 7$ (Given)
- 2. ∠2 and ∠4 are supplementary. (Linear Pair Postulate)
 - 3. $\angle 7 \cong \angle 6$ (Vertical Angles congruence Theorem)
 - 4. ∠6 and ∠4 are supplementary. (Substitution)
 - $5 m \parallel n$ (Consecutive Interior Angles Converse Postulate)
- 37. You are given that $\angle 3$ and $\angle 5$ are supplementary. By the Linear Pair Postulate, $\angle 5$ and $\angle 6$ are also supplementary. So $\angle 3 \cong \angle 6$ by the Congruent Supplements Theorem. By the Alternate Interior Angles Converse Theorem, $m \parallel n$.


Answers for 3.3 continued For use with pages 165–170

38. a.

- **b.** Given: $p \parallel q$ and $q \parallel r$, Prove: $p \parallel r$
- c. Statements (Reasons)
 - 1. $p \parallel q$ and $q \parallel r$ (Given)
 - 2. $\angle 1 \cong \angle 2$ (Alternate Interior Angles Theorem)
 - 3. $\angle 2 \cong \angle 3$ (Vertical Angles Congruence Theorem)
 - 4. $\angle 3 \cong \angle 4$ (Alternate Interior Angles Theorem)
 - 5. ∠1 ≅ ∠4(Transitive Property of Angle Congruence)
 - 6. $p \parallel r$ (Alternate Interior Angles Converse Theorem)
- **39. a.** Sample answer: Corresponding Angles Converse Theorem
 - b. Slide the triangle along a fixed horizontal line and use the edge that forms the 90° angle to draw vertical lines.

- 40-44. Sample answers are given.
- **40.** Consecutive Interior Angles Converse Theorem
- **41.** Vertical Angles Congruence Theorem followed by the Consecutive Interior Angles Converse Theorem
- **42.** Corresponding Angles Converse Postulate
- **43.** Vertical Angles Congruence Theorem followed by the Corresponding Angles Converse Postulate
- **44.** Consecutive Interior Angles Converse Theorem
- 45. a.

b. Yes; if two parallel lines are cut by a transversal, the angle bisectors of alternate interior angle pairs are parallel.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

45. b. (cont.)

Statements (Reasons)

1. $\ell \parallel n$

(Given)

- 2. $\angle AQP \cong \angle BPQ$ (Alternate Interior Angles Theorem)
- 3. $m \angle 1 + \angle 2 = m \angle AQP$, $m \angle 4 + \angle 3 = m \angle BPQ$ (Angle Addition Postulate)
- 4. $m \angle 1 = m \angle 2$, $m \angle 3 = m \angle 4$

(Definition of angle bisector)

- 5. $m \angle 2 + m \angle 2 = m \angle AQP$, $m \angle 3 + m \angle 3 = m \angle BPQ$ (Subtitution)
- 6. $2m \angle 2 = 2m \angle 3$ (Transitive Property of Equality)
- 7. $m \angle 2 = m \angle 3$ (Division Property of Equality)
- 8. $\angle 2 \cong \angle 3$ (Definition of Congruent Angles)
- 9. $\overrightarrow{OC} \parallel \overrightarrow{PD}$ (Alternate Interior Angles Converse Theorem)

3.3 Mixed Review

- **46.** $-\frac{4}{3}$ **47.** $\frac{3}{2}$

50. 32 sandwiches

- **51.** 4; by the Transitive Property of Congruence, $\overline{AB} \cong \overline{CD}$, so 9x - 11 = 6x + 1, 3x = 12,x = 4
- **52.** $-\frac{3}{4}$ **53.** $-\frac{3}{5}$ **54.** -1

3.1-3.3 Mixed Review of **Problem Solving**

- **1. a.** Sample answer: q and p, k and m
 - **b.** Sample answer: q and m
 - **c.** Sample answer: n and m, n and k
- **2.** a. $\angle 2$: supplementary,
 - $\angle 3$: supplementary,
 - ∠4: vertical.
 - ∠5: corresponding,
 - ∠6: supplementary.
 - \angle 7: alternate exterior,
 - ∠8: exterior
 - **b.** $\angle 2, \angle 6, \angle 8$
- 3. 53°; Alternate Exterior Angles Theorem
- 4. yes; Alternate Interior Angles Converse Theorem
- **5**. **a**. 11
 - **b.** 23°; Transitive Property of Parallel Lines and Alternate Interior Angles Theorem

6. 150°;

	1	5	0
	0	0	
0	0	0	0
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
(5)	(5)	(5)	(5)
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

7. 92, supplementary to 88°; 116°, $c \parallel d$ by the Alternate Interior Angles Converse Theorem followed by the Consecutive Interior Angles Theorem.