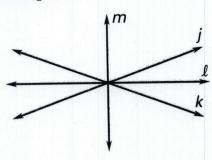
2.7 Skill Practice


- 1. vertical
- 2. The sum is 90°; the sum is 180°; same; the sum is 180°.
- 3. ∠MSN and ∠PSQ, ∠NSP and ∠QSR, ∠MSP and ∠PSR; indicated in diagram, Congruent Complements Theorem, Right Angles Congruence Theorem
- **4.** ∠ABC and ∠DEF, ∠CBD and ∠FEB; Congruent Supplements Theorem
- **5.** ∠*FGH* and ∠*WXZ*; Right Angles Congruence Theorem
- 6. ∠GML and ∠HMJ, ∠GMH and ∠LMJ, ∠JMK and ∠GMK;
 Vertical Angles Congruency
 Theorem, Vertical Angles
 Congruency Theorem, Right
 Angles Congruency Theorem
- 7. Yes; perpendicular lines form right angles, and all right angles are congruent.
- 8. 35°, 145°, 35°
- 9. 168°, 12°, 12°
- **10.** 143°, 37°, 143°
- **11.** 118°, 118°, 62°
- **12.** x = 11, y = 17
- **13.** x = 13, y = 20

14.
$$x = 4, y = 9$$

- 15. Sample answer: It was assumed that ∠1 and ∠3, and ∠2 and ∠4 are linear pairs, but they are not; ∠1 and ∠4, and ∠2 and ∠3 are not vertical angles and are not congruent.
- 16. D
- **17.** 30°
- 18. 25°

- **19.** 27°
- **20.** 133°
- 21. 58°

- **22.** false
- **23.** true
- 24. false
- 25. false
- **26.** true
- **27.** true
- **28.** 130°, 50°, 130°, 50°
- **29.** 140°, 40°, 140°, 40°
- **30.** Sample answer: $m\angle CBX = 100^{\circ}$, $m\angle ABX = 100^{\circ}$
- **31.** $\angle FGH$ and $\angle EGH$; Definition of angle bisector
- **32.** ∠1 and ∠9; Congruent Supplements Theorem
- **33.** Sample answer: ∠CEB and ∠DEB; Right Angles Congruence Theorem
- **34.** ∠5 and ∠1; Congruent Complements Theorem

2.7 Problem Solving

36. Statements (Reason)

- ∠1 and ∠2 are supplements;
 ∠3 and ∠4 are supplements;
 ∠1 ≅ ∠4. (Given)
- 2. $m \angle 1 + m \angle 2 = 180^{\circ}$; $m \angle 3 + m \angle 4 = 180^{\circ}$ (Definition of supplementary angles)
- 3. $m \angle 1 = m \angle 4$ (Definition of congruent angles)
- 4. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$ (Transitive Property of Equality)
- 5. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 1$ (Substitution)
- 6. $m\angle 2 = m\angle 3$ (Subtraction Property of Equality)
- 7. $\angle 2 \cong \angle 3$ (Definition of congruent angles)

37. $m \angle 1 + m \angle 2 = m \angle 1 + m \angle 3$, $m \angle 2 = m \angle 3$, Given, Definition of complementary angles, Definition of congruent angles

38. Statements (Reasons)

- 1. $\angle ABD$ is a right angle; $\angle CBE$ is a right angle. (Given)
- ∠ABC and ∠CBD are complementary. (Definition of complementary angles)
- 3. ∠DBE and ∠CBD are complementary. (Definition of complementary angles)
- 4. $\angle ABC \cong \angle DBE$ (Congruent Complements Theorem)

39. Statements (Reasons)

- 1. $\overline{JK} \perp \overline{JM}, \overline{KL} \perp \overline{ML},$ $\angle J \cong \angle M, \angle K \cong \angle L \text{ (Given)}$
- 2. $\angle J$ and $\angle L$ are right angles. (Definition of perpendicular lines)
- 3. $\angle M$ and $\angle K$ are right angles. (Right Angle Congruence Theorem)
- 4. $\overline{JM} \perp \overline{ML}, \overline{JK} \perp \overline{KL}$ (Definition of perpendicular lines)

- **40. a.** $m \angle 2 = (180 x)^{\circ}$, $m \angle 3 = x^{\circ}$, $m \angle 4 = (180 x)^{\circ}$
 - **b.** Sample answer: $x \approx 110$, $m\angle 2 \approx 70^{\circ}$, $m\angle 3 \approx 110^{\circ}$, $m\angle 4 \approx 70^{\circ}$
 - and ∠3 will get larger. Sample answer: ∠3 and ∠4, and ∠1 and ∠2 form linear pairs.

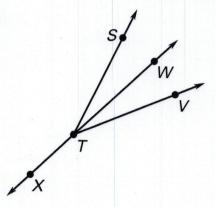
 Since the sum of the angles in a linear pair is always 180°, as one angle in a linear pair gets smaller the other angle of the linear pair will get larger.

41. Statements (Reasons)

- ∠1 and ∠2 are complementary; ∠3 and ∠2 are complementary. (Given)
- 2. $m \angle 1 + m \angle 2 = 90^{\circ}$; $m \angle 3 + m \angle 2 = 90^{\circ}$ (Definition of complementary)
- 3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$ (Transitive Property of Equality)
- 4. $m \angle 1 = m \angle 3$ (Subtraction Property of Equality)
- 5. $\angle 1 \cong \angle 3$ (Definition of congruent angles)

42. Statements (Reasons)

- 1. $\angle 1 \cong \angle 3$ (Given)
- 2. $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$ (Vertical Angles Theorem)
- 3. $\angle 2 \cong \angle 3$ (Transitive Property of Angle Congruence)
- 4. $\angle 2 \cong \angle 4$ (Transitive Property of Angle Congruence)


43. Statements (Reasons)

- 1. $\angle QRS$ and $\angle PSR$ are supplementary. (Given)
- 2. $\angle QRS$ and $\angle QRL$ are a linear pair. (Definition of linear pair)
- 3. ∠*QRS* and ∠*QRL* are supplementary. (Definition of linear pair)
- 4. $\angle QRL \cong \angle PSR$ (Congruent Supplements Theorem)

44. Statements (Reasons)

- ∠1 and ∠3 are complementary; ∠2 and ∠4 are complementary. (Given)
- 2. $m \angle 1 + m \angle 3 = 90^{\circ}$ $m \angle 2 + m \angle 4 = 90^{\circ}$ (Definition of complementary)
- 3. $\angle 2 \cong \angle 3$ (Vertical Angles Congruence Theorem)
- 4. $m \angle 1 + m \angle 2 = 90^{\circ}$ (Substitution)
- 5. $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 4$ (Transitive Property of Equality)
- 6. $m \angle 1 = m \angle 4$ (Subtraction Property of Equality)
- 7. $\angle 1 \cong \angle 4$ (Definition of congruent angles)

45. a.

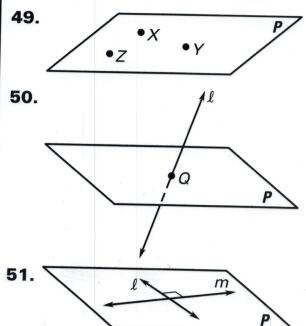
b. Given: $\angle STV$ is bisected by \overrightarrow{TW} , and \overrightarrow{TX} and \overrightarrow{TW} are opposite rays. Prove: $\angle STX \cong \angle VTX$

- c. Statements (Reasons)
 - 1. $\angle STV$ is bisected by \overrightarrow{TW} ; \overrightarrow{TX} and \overrightarrow{TW} are opposite rays. (Given)
 - 2. $\angle STW \cong \angle VTW$ (Definition of angle bisector)
 - 3. ∠VTW and ∠VTX are a linear pair; ∠STW and ∠STX are a linear pair.
 (Definition of linear pair)
 - 4. ∠VTW and ∠VTX are supplementary; ∠STW and ∠STX are supplementary.

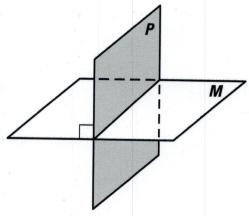
 (Linear Pair Postulate)
 - 5. ∠STW and ∠VTX are supplementary. (Substitution)
 - 6. $\angle STX \cong \angle VTX$ (Congruent Supplements Theorem)

47. Statements (Reasons)

- 1. $m \angle WYZ = m \angle TWZ = 45^{\circ}$ (Given)
- ∠TWZ and ∠SWZ are a linear pair; ∠WYZ and ∠XYW are a linear pair. (Definition of linear pair)
- 3. ∠TWZ and ∠SWZ are supplementary; ∠WYZ and ∠XYW are supplementary.


 (Linear Pair Postulate)
- 4. $m\angle TWZ + m\angle SWZ = 180^{\circ}$; $m\angle WYZ + m\angle XYW = 180^{\circ}$ (Definition of supplementary angles)
- 5. $m\angle TWZ + m\angle SWZ = m\angle WYZ + m\angle XYW$ (Transitive Property of Equality)
- 6. $45^{\circ} + m \angle SWZ = 45^{\circ} + m \angle XYW$ (Substitution)
- 7. $m \angle SWZ = m \angle XYW$ (Subtraction Property of Equality)
- 8. $\angle SWZ \cong \angle XYW$ (Definition of congruent angles)

48. Statements (Reasons)


- 1. The hexagon is regular. (Given)
- ∠1 is congruent to an interior angle of the hexagon. (Vertical Angles Congruence Theorem)
- 3. ∠2 is supplementary to an interior angle of the hexagon.(Linear Pair Postulate)
- 4. ∠2 is supplementary to ∠1. (Substitution)
- 5. $m \angle 1 + m \angle 2 = 180^{\circ}$ (Definition of supplementary angles)

2.7 Mixed Review

49–52. Sample answers are given.

52.

53.

2.5–2.7 Mixed Review of Problem Solving

- 1. a. Statements (Reasons)
 - 1. \overrightarrow{BD} bisects $\angle ABC$; \overrightarrow{BC} bisects $\angle DBE$. (Given)
 - 2. $m \angle ABD = m \angle DBC$; $m \angle DBC = m \angle CBE$ (Definition of angle bisector)
 - 3. $m \angle ABD = m \angle CBE$ (Transitive Property of Equality)
 - **b.** 33° ; $m\angle DBC = \frac{1}{3} m\angle ABE$

- 2. Yes; each piece is $\frac{1}{4}$ the original width.

	1	0	0
	0	0	
0	0	0	0
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
(5)	(5)	(5)	3
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

- 4. Sample answer: Congruent Supplements Theorem states exactly what is to be explained while the Transitive Property of Angle Congruence requires ∠1 ≅ ∠2 and ∠2 ≅ ∠3 to be able to state ∠1 ≅ ∠3.
- **5. a.** Equation (Reason)

$$T = c(1 + s)$$
 (Given)

$$\frac{T}{c} = 1 + s$$
 (Division Property of Equality)

$$\frac{T}{c} - 1 = s$$
 (Subtraction Property of Equality)

b. 0.07, or 7%

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

- **5. c.** Yes; distribute the c then subtract c from both sides, followed by dividing both sides by c.
- **6.** Sample answer: Either $m \angle BAC$ or $m \angle CAD$; since $\angle GAD$ is a straight angle, if two of the three angles are known, the third angle can be found.
- 7. $m \angle 1 = m \angle 2 = 45^{\circ}$, $m \angle 3 = m \angle 4 = 135^{\circ}$; $m \angle 1 + m \angle 3 = m \angle 1 + 3m \angle 1$ $= 4m \angle 1 = 180^{\circ}$
- 8. $\angle EAF$ and $\angle BAC$ are complementary. Sample answer: $m\angle BAC + m\angle CAD + m\angle DAE + m\angle EAF = m\angle BAF$ by the Angle Addition Postulate; $m\angle BAF = 180^{\circ}$ and $m\angle CAD + m\angle DAE = 90^{\circ}$, so $m\angle BAC + m\angle EAF = 90^{\circ}$.