Geometry Cumulative Review Keys

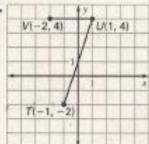
Chapter 1

Cumulative Review

1. Sample answers: Line k; BC 2. A, B, C

3. Sample answer: plane BCD 4. CA

5. \overrightarrow{BC} and \overrightarrow{BA} ; \overrightarrow{FB} and \overrightarrow{FE}


6. Sample answer: l 7. B 8. PQ ≠ RS

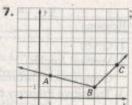
9. $\overline{FE} \cong \overline{GH}$ **10.** GM = 11 **11.** $TV = \frac{166}{11}$

12. (2,3) **13.** (-14,-5) **14.** $m\angle ABD = 107^{\circ}$

15. $m \angle MKL = 33^{\circ}$

16.

∠TUV is acute;


Sample point: (-2,0)

17.

7(0, 9) U(2, 0) V(6, -1)

; ∠TUV is obtuse; Sample point: (2, 1)

- **18**. $m\angle 2 = 55^{\circ}$ **19**. $m\angle 2 = 74^{\circ}$
- **20.** $m\angle 2 = 10^{\circ}$ **21.** $m\angle 2 = 36^{\circ}$
- 22. convex polygon 23. concave polygon
- **24.** not a polygon **25.** x = 8 **26.** x = 17.5
- **27.** x = 15 **28.** 150,000 cm² **29.** $5\frac{5}{9}$ yd²
- **30.** $5\frac{1}{8}$ ft² **31.** 47.1 in. **32.** 176.7 in.²
- 33. Yes; 180 in.2

∠ABC is obtuse; Sample point: (0, 3)

8. A C ;

∠ABC is acute; Sample point: (0, 0)

- 9. $m\angle 2 = 155^{\circ}$ 10. $m\angle 2 = 144^{\circ}$
- 11. $m\angle 2 = 72^{\circ}$ 12. $m\angle 2 = 126^{\circ}$
- **13.** x = 5 cm **14.** x = 16 mm **15.** x = 5 in.
- **16.** $3\frac{1}{9}$ yd² **17.** h = 17 cm **18.** $\ell = 17$ in.
- 19. Sample answer: 9
- 20, Sample answer: -10 and 2
- 21. Sample answer: 15° and 43°
- 22. Converse: If a polygon is a parallelogram, then it is a rectangle. (false); Inverse: If a polygon is not a rectangle, then it is not a parallelogram. (false); Contrapositive: If a polygon is not a parallelogram, then it is not a rectangle. (true)
- 23. Converse: If a number is rational, then the number is an integer. (false); Inverse: If a number is not an integer, then it is not rational. (false); Contrapositive: If a number is not rational, then the number is not an integer. (true) 24. If a triangle has a 90° angle, then the two acute angles are complementary. 25. If you like to study history, then you enjoy going to the library.
- 26. If you pass a driver's test, then you must act responsibly. 27. True 28. False, select two points along the intersection of a wall and the floor. 29. True 30. False, the intersection of the ceiling and a wall is a line.
- **31.** $y = \frac{20 7x}{-2}$; reasons will vary
- **32.** y = 10.5; reasons will vary
- **33.** $h = \frac{V}{I_W}$; Division Property of Equality
- **34.** *h* = 11 in.

35. Symmetric Property of Equality of Angle Measures **36.** Reflexive Property of Equality of Segment Lengths $37. m \angle K = 180^{\circ} - 9x^{\circ}$

Cumulative Review

- 1.7 2.7 3.4 4.13
- **5.** $BC = 2\sqrt{17}$; $EF = 8\sqrt{2}$; $\overline{BC} \not\cong \overline{EF}$
- **6.** $MN = \sqrt{137}$; $OP = \sqrt{130}$; $\overline{MN} \neq \overline{OP}$

1. x = 8; DE = 37; EF = 29 **2.** x = 9; DE = 7; EF = 12 **3.** x = 12; DE = 4; EF = 36

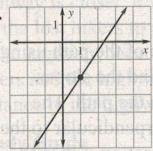
4. $CD = 10\frac{3}{4}$ in. **5.** $m \angle DEG = 28^{\circ}$;

 $m \angle GEF = 152^{\circ}$ **6.** $m \angle DEG = 110^{\circ}$; $m \angle GEF = 70^{\circ}$ **7.** Convex polygon **8.** not a polygon **9.** concave polygon **10.** 408 m²

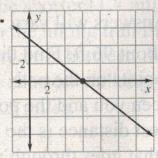
11. 82 m 12. perfect squares; 36 13. times ten, cut in half, repeat; 1000 14. false; a right triangle

15. false; a trapezoid **16.** Reflexive Property of Equality **17.** Symmetric Property of Equality

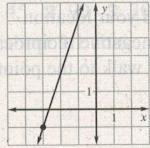
18. Transitive Property of Equality


19. Transitive Property of Equality

20. Perpendicular 21. Perpendicular


22. Parallel **23.** x = 104; y = 76

24. $x = 15^{\circ}$; $y = 75^{\circ}$ **25.** x = 7 **26.** x = 95


27.

20

29.

hluada udic ,:

30.
$$y = \frac{3}{2}x - \frac{7}{2}$$
 31. $y = -\frac{24}{5}x + \frac{24}{5}$

32.
$$y = 3x + 8$$

Cumulative Review

- **1.** 2.4 cm **2.** 3.1 cm **3.** (-1, 3)
- 4. B(-1, 5) y A(3, 1) C(-2, 0) 1 x

; $\angle ABC$ is acute; Sample answer: (0, 1)

5. C(4, 1)

A(-2, -3) B(1, -3)

 $\angle ABC$ is obtuse; Sample answer: (2, 0)

- **6. a.** 452.16 ft² **b.** 75.36 ft **7.** Add 6 to previous number; 21 **8.** Multiply previous number by 10; 70,000 **9.** Subtract 9 from previous number; -15 **10.** If an angle is a right angle, then the angle measures 90°. **11.** If you are a football player, then you are an athlete.
- **12.** If you are a high school student, then you must take three math courses.

13.
$$w = \frac{P - 2\ell}{2}$$
; $w = 5.5$ ft **14.** 140°; 40°

- 15. alternate interior 16. alternate exterior
- 17. consecutive interior 18. corresponding
- 19. alternate interior 20. alternate exterior
- **21.** neither **22.** parallel **23.** E = 25x + 320
- **24.** \$395 **25.** x = 25.5; obtuse triangle
- **26.** x = 45; right triangle **27.** corresponding angles **28.** neither **29.** corresponding sides
- **30.** AAS; $\triangle DCA \cong \triangle BAC$

1. \overrightarrow{AB} 2. \overrightarrow{EA} , \overrightarrow{EB} , \overrightarrow{EC} , \overrightarrow{ED} 3. \overrightarrow{CB} 4. \overrightarrow{CE}

5. $m \angle A = 109^{\circ}$; $m \angle B = 71^{\circ}$

6. $m \angle A = 49^{\circ}$; $m \angle B = 41^{\circ}$

7. $m \angle A = 229^{\circ}; m \angle B = 131^{\circ}$

8. Trisha is at school. **9.** $\angle X \cong \angle Y$

10. Taylor is a U.S. citizen.

11. Alternate Exterior Angles Theorem

12. Corresponding Angles Postulate

13. Alternate Interior Angles Theorem

14. Consecutive Interior Angles Theorem

15. x = 25 **16.** x = 17

17. $\triangle ABD \cong \triangle CBD$; AAS Congruence Theorem


18. $\triangle FIH \cong \triangle JIG$; HL Congruence Theorem

19. x = y = 41 **20.** x = 94; y = 16

21. x = 39; y = 19 **22.** (9, -2) **23.** (6, -4)

24. 22 **25.** 7 **26.** AC = 11 **27.** BC = 6

- 1. Sample answer:
- 2. Sample answer:

3. Sample answer:

- **4.** x = 29; y = 63 **5.** x = 3; y = 12
- 6. Yes; Alternate Exterior Angles Converse
- 7. No 8. Yes; Corresponding Angles Converse
- **9.** $\triangle ABD \cong \triangle CDB$; Alternate interior angle congruence and reflexive property of congruence of segments provide missing information.
- **10.** $\triangle BEC \cong \triangle DEA$; Vertical angle congruence and alternate interior congruence of angles provide missing information.

11.

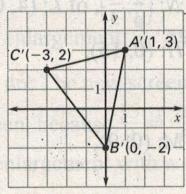
Statements	Reasons
1. $\angle B \cong \angle E$	1. Definition of regular polygon.
2. $AE \cong AB, ED \cong BC$	2. Definition of regular polygon.
$3. \triangle ABC \cong \triangle AED$	3. SAS Congruence Theorem

15. The third side must be greater than 3 meters and less than 21 meters. **16.** The third side must be greater than 8 yards and less than 42 yards.

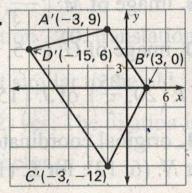
17. The third side must be greater than 14 inches and less than 86 inches.

18. The arithmetic mean is higher. 19. true

20. true **21.**
$$\frac{5}{17}$$
 22. $x = 20.4$; $z = 9$

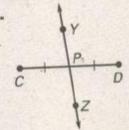

23. $\triangle ABC$ perimeter = 26; $\triangle DEF$ perimeter = 88.4

24.
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{2}{5}$$
; scale factor = $\frac{2}{5}$


25.
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{4}{3}$$
; scale factor = $\frac{4}{3}$

26. scale factor = 13

27.


28.

Z. original coordinates for L L.

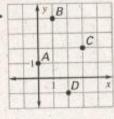
Cumulative Review

1.

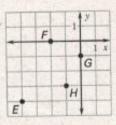
No, the line can bisect the segment by intersecting it at any angle.

- 2. 98°; 82° 3. About 3.2 units
- 4. About 4.5 units 5. No 6. Yes; AAS
- **7.** Yes; ASA **8.** No **9.** QR = 12

10.
$$PQ = \frac{58}{3}$$
 11. $AB = 14$ **12.** $x = 2$


- **13.** x = 9 **14.** x = 5 **15.** 120 feet; 56 feet
- **16.** Not similar **17.** $\triangle DEF \sim \triangle IHG$

18.
$$y = 24$$
 19. $s = 8.75$ **20.** 12 feet


- 21. Yes; right triangle 22. Not a triangle
- 23. Yes; obtuse triangle
- **24.** $\triangle JKL \sim \triangle JMK \sim \triangle KML$
- **25.** $\triangle TUV \sim \triangle WUT \sim \triangle WTV$
- **26.** $m \angle A \approx 49.6^{\circ}$ **27.** $m \angle A \approx 54.8^{\circ}$

Cumulative Review

1.

2.

congruent

not congruent

3.
$$5x + 35 = 1$$
 4. $\frac{1}{3}$ *CD* **5.** $m \angle J = m \angle F$

6.
$$m = -\frac{1}{7}$$
 7. $m = \frac{4}{13}$ **8.** $m = 0$

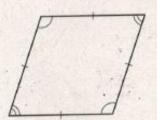
9.
$$y = -\frac{3}{2}x + 9$$
 10. $y = \frac{1}{5}x + \frac{39}{5}$

11.
$$(x, y) \rightarrow (x - 5, y + 1)$$

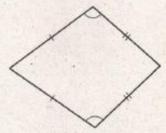
12.
$$(x, y) \rightarrow (x + 7, y - 2)$$
 13. $AB = 21$

14.
$$AB = 19$$
 15. yes **16.** No; $10 + 11 < 22$

17. yes 18. The first jogger is farther from the pavilion; Hinge Theorem 19. 12°, 42°, 126°


22.
$$TZ = 8.25$$
 23. $E(15.4, 0)$ **24.** $E(-17.5, 0)$

25.
$$c = 7\sqrt{2}$$
 26. $a = 16\sqrt{3}$; $k = 32$


27.
$$148.6 \text{ ft}^2$$
 28. $MN = 21$ **29.** $MN = 32.5$

30.
$$MN = 13.1$$

31. Sample answer:

32. Sample answer:

Cumulative Review

1.
$$m \angle R = (95 - 3x)^{\circ}$$
 2. $y = \frac{2}{3}x - \frac{25}{3}$

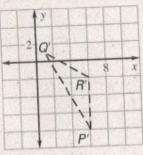
3. y = -5x - 13 **4.** x = 28; obtuse triangle

5. x = 29; acute triangle **6.** x = 7 **7.** x = 17

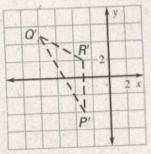
8. Assume temporarily that the whole number is not even. **9.** Assume temporarily that $\triangle ABC$ is not an isosceles triangle. **10.** d = 17.6

11. k = 1.5 **12.** x = 4

13.
$$\triangle ABC \sim \triangle RST$$
 because $\frac{AB}{RS} = \frac{BC}{ST} = \frac{AC}{RT}$.


14.
$$z = 76.8$$
 15. $y = 45$ **16.** $x = 40$

17. about 77 ft 18. 24 19. 6 20. D(2, 4)

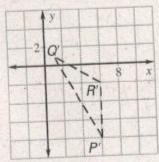

21. D(-4, -1) **22.** 40° **23.** 90° **24.** 20

25. about 8.3 26. 50° 27. 13

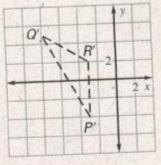
28.

29.

30.
$$\begin{bmatrix} 1 & -3 \\ 12 & 7 \end{bmatrix}$$
 31. $\begin{bmatrix} 11 & 8 & -8 \\ 1 & 17 & -1 \end{bmatrix}$

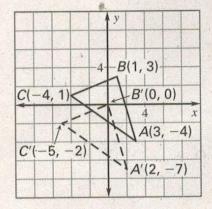

32.
$$\begin{bmatrix} -23 & -17 \\ -36 & -18 \end{bmatrix}$$
 33. $\begin{bmatrix} -13 \\ 25 \end{bmatrix}$

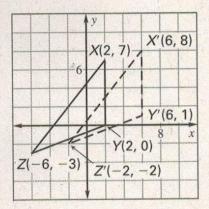
13.
$$\triangle ABC \sim \triangle RST$$
 because $\frac{AB}{RS} = \frac{BC}{ST} = \frac{AC}{RT}$.


14.
$$z = 76.8$$
 15. $y = 45$ **16.** $x = 40$

21.
$$D(-4, -1)$$
 22. 40° **23.** 90° **24.** 20

29.




30.
$$\begin{bmatrix} 1 & -3 \\ 12 & 7 \end{bmatrix}$$
 31. $\begin{bmatrix} 11 & 8 & -8 \\ 1 & 17 & -1 \end{bmatrix}$

32.
$$\begin{bmatrix} -23 & -17 \\ -36 & -18 \end{bmatrix}$$
 33. $\begin{bmatrix} -13 \\ 25 \end{bmatrix}$

Chapter 10 Continued

13.
$$\begin{bmatrix} A' & B' & C' \\ 2 & 0 & -5 \\ -7 & 0 & -2 \end{bmatrix}$$
 14.
$$\begin{bmatrix} X' & Y' & Z' \\ 6 & 6 & -2 \\ 8 & 1 & -2 \end{bmatrix}$$

15.
$$\begin{bmatrix} A & B & C & D & A' & B' & C' & D' \\ -2 & -1 & 4 & 0 \\ 1 & 5 & 3 & -3 \end{bmatrix}; \begin{bmatrix} 2 & 1 & -4 & 0 \\ 1 & 5 & 3 & -3 \end{bmatrix}$$

16.
$$\begin{bmatrix} D & E & F & D' & E' & F' \\ -7 & -1 & 4 \\ -2 & 1 & 0 \end{bmatrix}; \begin{bmatrix} D' & E' & F' \\ -7 & -1 & 4 \\ 2 & -1 & 0 \end{bmatrix}$$

17.
$$\begin{bmatrix} 6 & -4 & -2 & -18 \\ -10 & 2 & -14 & -12 \end{bmatrix}$$

18.
$$\begin{bmatrix} 0 & -5 \\ 45 & 10 \end{bmatrix}$$
 19. $\begin{bmatrix} 4 & -2 \\ 0 & 3 \\ -8 & 10 \end{bmatrix}$

20. 3.5; yes **21.**
$$r = 25.5$$
 22. $x = \pm 5$

23.
$$x = 76$$
; $y = 105$ **24.** $k = 62$; $n = 124$

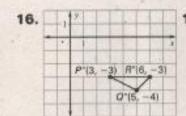
25.
$$m = 43.5$$
; $n = 21$ **26.** $x = 73$ **27.** $x = 22$

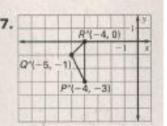
Cumulative Review

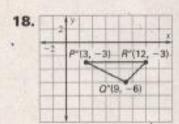
1. 176.7 m² **2.** 47.1 m **3.** Sample answer: $\frac{24}{3} = 8$

4. Sample answer: 1, 2, $\sqrt{5}$ **5.** $m \angle M = 36^{\circ}$, $m \angle P = 36^{\circ}$, $m \angle N = 108^{\circ}$ **6.** Not a right triangle

7. right triangle; altitude = 5.1

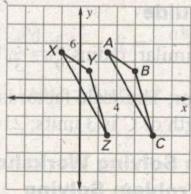

8. right triangle; altitude = 3.7


9. Perimeter = 78 units


10. x = 4 **11.** x = 2 **12.** x = 11

13.
$$\begin{bmatrix} A' & B' & C' \\ -3 & 4 & 1 \\ *2 & -1 & -5 \end{bmatrix}$$
 14.
$$\begin{bmatrix} D' & E' & F' \\ -1 & -5 & -2 \\ -4 & 0 & 3 \end{bmatrix}$$

15.
$$\begin{bmatrix} W' & X' & Y' & Z' \\ 3 & 2 & -1 & -4 \\ 4 & 0 & 1 & 5 \end{bmatrix}$$


19. No; radii are different. 20. Yes; both arcs have congruent central angles and congruent radii.

21. x = 4 **22.** x = 20.75 **23.** $x \approx 10.16$

24. 84 25. 95 26. 119 27. 12m

1.
$$x = 12$$
; $y = 33$ **2.** $x = 25$; $y = 58$

3. Sample answer:

4. x = 27.6 **5.** x = 47.0 **6.** x = 5.3 **7.** 1980°

8. 1080° **9.** 3600° **10.** 540° **11.** Kite; $\overline{PQ} \cong \overline{PS}$ and $\overline{QR} \approx \overline{SR}$ are pairs of consecutive sides **12.** Trapezoid; $\overline{PQ} \parallel \overline{SR}$ and \overline{PS} is not \parallel to \overline{QR} **13.** Parallelogram; $\overline{QR} \parallel \overline{PS}$ and $\overline{RS} \parallel \overline{QP}$ **14.** Rhombus; $\overline{PQ} \parallel \overline{RS}$, $\overline{PS} \parallel \overline{QR}$, and $\overline{QS} \perp \overline{PR}$

Chapter 12 Continued

15. Translate down 5 and left 2, then reflect over the y-axis. **16.** Rotate 90° counterclockwise about the origin, then translate down 6 units.

17.2 18.1 19.8

20.
$$(x+3)^2 + (y-2)^2 = 64$$

21.
$$(x-6)^2 + (y+1)^2 = 98$$
 22. 5:3

23. 13:15 **24.**
$$\sqrt{3}$$
:2 **25.** 120.6 ft²; 683.6 ft²

27.
$$S = 226.73 \text{ cm}^2$$
; $V = 209.44 \text{ cm}^3$

28.
$$S = 142 \text{ ft}^2$$
; $V = 105 \text{ ft}^3$

29.
$$S = 389.56 \text{ m}^2$$
; $V = 458.90 \text{ m}^3$

30.
$$S = 345.70 \text{ in.}^2$$
; $V = 378 \text{ in.}^3$

31.
$$S = 78.54 \text{ ft}^2$$
; $V = 65.45 \text{ ft}^3$

32.
$$S = 251.14 \text{ in.}^2$$
; $V = 290.98 \text{ in.}^3$