9.5 Apply Compositions of Transformations

glide reflection - a translation followed by a reflection

Ex 1: The vertices of $\triangle ABC$ are A(3, 2), B(6, 3), C(7, 1). Find the image of $\triangle ABC$ after the glide reflection.

Translation:
$$(x, y) \rightarrow (x - 12, y)$$

Reflection: in the x- axis

A
$$(3,2) \rightarrow A'(-9,2)$$

B $(6,3) \rightarrow B'(-6,3)$
C $(7,1) \rightarrow C'(-5,1)$

composition of transformations - when 2 or more transformations are combined to form a single transformation

THEOREM

For Your Notebook

THEOREM 9.4 Composition Theorem

The composition of two (or more) isometries is an isometry.

Proof: Exs. 35-36, p. 614

 $\underline{Ex\ 2}$: The endpoints of \overline{RS} are R(1, -3) and S(2, -6). Graph the image of \overline{RS} after the composition.

Reflection: in the y-axis

Rotation: 90° about the origin

$$R'(-1,-3) \rightarrow R''(3,-1)$$

 $S'(-2,-6) \rightarrow S''(6,-2)$

THEOREM

THEOREM 9.5 Reflections in Parallel Lines Theorem

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a translation.

If P'' is the image of P, then:

- 1. $\overline{PP''}$ is perpendicular to k and m, and
- 2. PP'' = 2d, where d is the distance between k and m.

Proof: Ex. 37, p. 614

THEOREM

For Your Notebook

THEOREM 9.6 Reflections in Intersecting Lines Theorem

If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a rotation about point P.

The angle of rotation is $2x^{\circ}$, where x° is the measure of the acute or right angle formed by k and m.

Proof: Ex. 38, p. 614

