9.4 Perform Rotations

<u>rotation</u> - a transformation in which a figure is turned about a fixed point, called the <u>center of rotation</u>

angle of rotation - the angle formed by drawing rays from the center of rotation to a point and its image

A rotation about a point P through an angle x° maps every point Q in the plane to a point Q' so that one of the following properties is true:

* If Q is not the center of rotation P, then QP = Q'P and $m \angle QPQ' = x^{\circ}$, or

* If Q is the center of rotation P, then the image of Q is Q

Note: in this chapter, all rotations will be counterclockwise

Ex 1: Draw a 120° rotation of ΔABC about P.

STEP 1 Draw a segment from A to P.

STEP 3 Draw A' so that PA' = PA.

STEP 4 Repeat Steps 1–3 for each vertex. Draw $\triangle A'B'C'$.

KEY CONCEPT

For Your Notebook

Coordinate Rules for Rotations about the Origin

When a point (a, b) is rotated counterclockwise about the origin, the following are true:

- 1. For a rotation of 90°, $(a, b) \rightarrow (-b, a)$.
- **2.** For a rotation of 180°, $(a, b) \rightarrow (-a, -b)$.
- **3.** For a rotation of 270°, $(a, b) \rightarrow (b, -a)$.

 $\underline{Ex\ 2}$: Graph quadrilateral RSTU with vertices R(3, 1), S(5, 1), T(5, -3), and U(2, -1). Then rotate the quadrilateral 270° about the origin.

$$(x_{1}y) \rightarrow (y_{1}-x)$$

 $R(3,1) \rightarrow R'(1,-3)$
 $S(5,1) \rightarrow S'(1,-5)$
 $T(5,-3) \rightarrow T'(-3,-5)$
 $U(2,-1) \rightarrow U'(-1,-2)$

THEOREM

For Your Notebook

THEOREM 9.3 Rotation Theorem

A rotation is an isometry.

Proof: Exs. 33-35, p. 604

$$A = \begin{bmatrix} B & C' \\ C' & P \end{bmatrix}$$

 $\triangle ABC \cong \triangle A'B'C'$

To prove the Rotation Theorem, you need to show that a rotation preserves the length of a segment. There are THREE cases to consider:

Case 1 R, Q, and P are noncollinear.

Case 2 R, Q, and P are collinear.

Case 3 P and R are the same point.

3x + 1

Ex 3: The quadrilateral is rotated about P. What is the value of y?

