9.3 Perform Reflections

<u>reflection</u> - a transformation that uses a line as a mirror to reflect an image, this line is the <u>line of reflection</u>,

A reflection in the line m maps the point P in the plane to a point P', so that for each point one of the following properties is true:

* If P is not on the line m, then m is the perpendicular bisector of \overline{PP} or

* If P is on the line m, then P = P'

The vertices of $\triangle ABC$ are A(1, 3), B(5, 2), and C(2, 1). Graph the reflection of $\triangle ABC$ described.

Ex 1: In the line n: x = 3

Ex 2: In the line m: y = 1

KEY CONCEPT

For Your Notebook

Coordinate Rules for Reflections

- If (a, b) is reflected in the x-axis, its image is the point (a, -b).
- If (a, b) is reflected in the y-axis, its image is the point (-a, b).
- If (a, b) is reflected in the line y = x, its image is the point (b, a).
- If (a, b) is reflected in the line y = -x, its image is the point (-b, -a).

 $\underline{Ex\ 3}$: The endpoints of \overline{FG} is $F(-1,\ 2)$ and $G(1,\ 2)$. Reflect the segment in the line y = x. Graph the segment and its image.

The slope of y=x is m=1so $m_{FF'}=-1$ and $m_{GG'}=-1$ because they will be Lto y=x.

Ex 4: Reflect FG in the line y = -x. Graph the segment and its image.

$$(x_1y) \rightarrow (-y_1-x)$$

 $F(-1,2) \rightarrow F'(-2,1)$
 $G(1,2) \rightarrow G'(-2,-1)$

THEOREM

For Your Notebook

THEOREM 9.2 Reflection Theorem

A reflection is an isometry.

Proof: Exs. 35-38, p. 595

To prove the Reflection Theorem, you need to show that a reflection preserves the length of the segment. There are FOUR cases to consider:

Case 1 P and Q are on the same side of m.

Case 2 P and Q are on opposite sides of m.

Case 3 P lies on m, and \overline{PQ} is not \bot to m.

Case 4 Q lies on m, and $\overline{PQ} \perp m$.

Ex 5: You are going to buy books. Your friend is going to buy CDs. Where should you park to minimize the distance you both will walk?

Reflect B in line m to obtain B'
Draw CB', label the intersection I
Since CB' is the shortest distance between C and B' and BC=B'C,
park at point I to minimize
the combined distance CI+BI,
you both have to walk.

