8.5 Use Properties of Trapezoids and Kites

trapezoid - a quadrilateral with exactly one pair of parallel sides, these sides are called bases; trapezoids have two pairs of base angles; the non-parallel sides are the legs of the trapezoid

isosceles trapezoid- a trapezoid whose legs are congruent

THEOREMS

For Your Notebook

THEOREM 8.14

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid ABCD is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Proof: Ex. 37, p. 548

THEOREM 8.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid ABCD is isosceles.

Proof: Ex. 38, p. 548

THEOREM 8.16

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Proof: Exs. 39 and 43, p. 549

Ex 1: Show that ORST is a trapezoid.

$$M_{RS} = \frac{4-3}{2-0} = \frac{1}{2}$$
 $M_{OT} = \frac{2-0}{4-0} = \frac{1}{2}$
 $SO_{RS} // OT$
 $M_{ST} = \frac{2-4}{4-2} = -1$
 $M_{OR} = \frac{3-0}{0-0} = undefined$
 $SO_{ST} = 1000 = 1000$
 $SO_{ST} = 1000 = 1000$

exactly one pair of parallel sides, so trapezoid

Ex 2: The top of a table is an isosceles trapezoid. Find the measure of all the angles if one of the angles measure 65° .

$$MLD = MLC = 65^{\circ}$$

 $X + X + 65 + 65 = 360$
 $2X + 130 = 360$
 $2X = 230$
 $X = 115$
 $MLA = MLB = 115^{\circ}$

midsegment of a trapezoid - the segment that connects the midpoints of the legs of a trapezoid

THEOREM

For Your Notebook

THEOREM 8.17 Midsegment Theorem for Trapezoids

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

If \overline{MN} is the midsegment of trapezoid ABCD, then $\overline{MN} \| \overline{AB}$, $\overline{MN} \| \overline{DC}$, and $\overline{MN} = \frac{1}{2}(AB + CD)$.

kite - a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent

THEOREMS

For Your Notebook

THEOREM 8.18

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral *ABCD* is a kite, then $\overline{AC} \perp \overline{BD}$.

Proof: Ex. 41, p. 549

THEOREM 8.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral ABCD is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\equiv \angle D$.

Proof: Ex. 42, p. 549

Ex 3: Find m \(D.

$$M \angle D = M \angle F = X$$

 $2x + 124 + 80 = 360$
 $2x + 204 = 360$
 $2x = 156$
 $x = 78$

