8.1 Find Angle Measures in Polygons

consecutive vertices - two vertices that are endpoints of the same side

diagonal - a segment that joins two nonconsecutive vertices

Find sums of interior angle measures

- STEP 1 Draw polygons Use a straightedge to draw convex polygons with three sides, four sides, five sides, and six sides. An example is shown.
- STEP 2 Draw diagonals In each polygon, draw all the diagonals from one vertex. A diagonal is a segment that joins two nonconsecutive vertices. Notice that the diagonals divide the polygon into triangles.
- STEP 3 Make a table Copy the table below. By the Triangle Sum Theorem, the sum of the measures of the interior angles of a triangle is 180°. Use this theorem to complete the table.

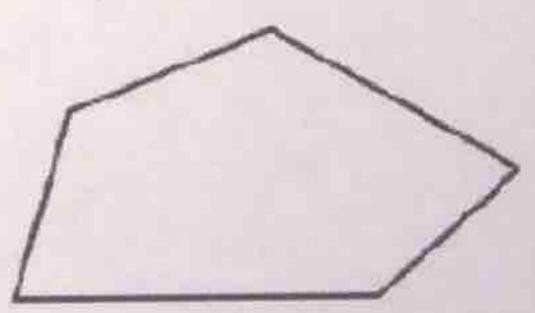
Polygon	Number of sides	Number of triangles	Sum of measures of interior angles
Triangle	3	1	$1 \cdot 180^{\circ} = 180^{\circ}$
Quadrilateral	4	2	2 · 180° = 360°
Pentagon	5	3	3 · 180° = 540°
Hexagon	6	4	4.180° = 720°

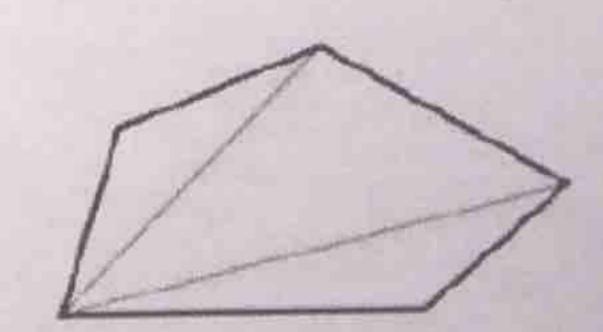
Look for a pattern in the last column of the table...

What is the sum of the interior angles for a convex heptagon?

What is the sum of the interior angles for a convex octagon?

What is the sum of the interior angles for a convex n-gon?





THEOREMS

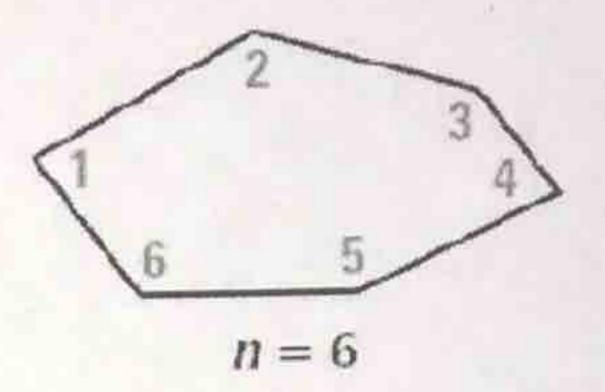
For Your Notebook

THEOREM 8.1 Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.

$$m \angle 1 + m \angle 2 + \cdots + m \angle n = (n-2) \cdot 180^{\circ}$$

Proof: Ex. 33, p. 512 (for pentagons)



COROLLARY TO THEOREM 8.1 Interior Angles of a Quadrilateral

The sum of the measures of the interior angles of a quadrilateral is 360°.

Proof: Ex. 34, p. 512

Ex 1: Find the sum of the measures of the interior angles of a convex decagon. $(n-2) \cdot 180^{\circ}$

1440°

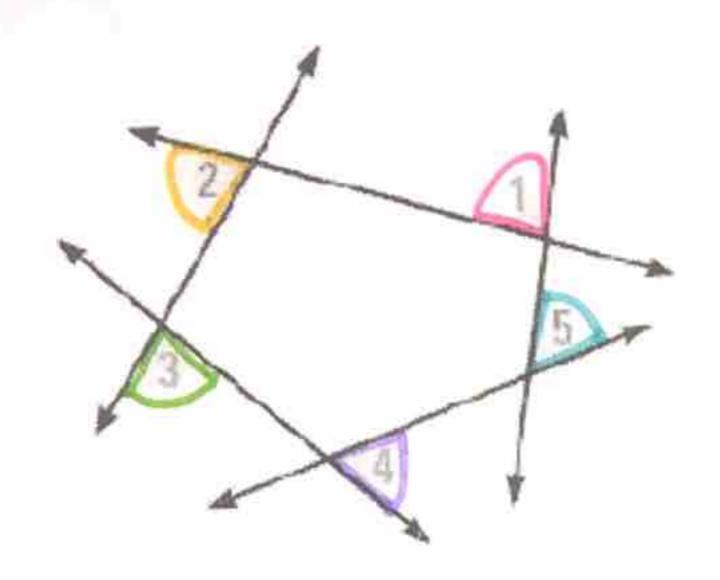
Ex 2: The sum of the measures of the interior angles of a convex polygon is 2340° . Classify the polygon by the number of sides.

$$(n-2) \cdot 180^{\circ} = 2340^{\circ}$$

 $n-2 = 13$

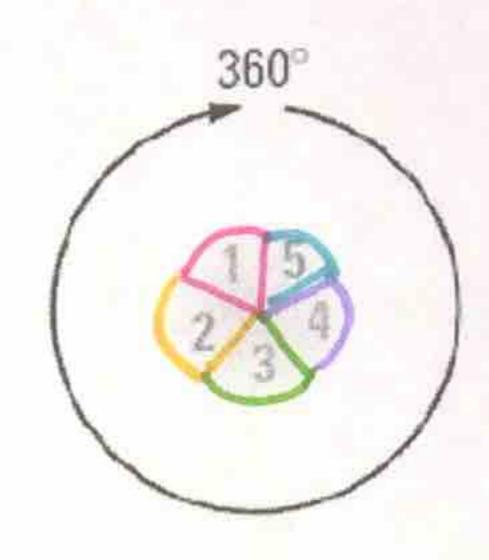
Ex 3: A convex pentagon has the following interior angle measures: 110° , 92° , 84° , 100° , and x° . What is the value of x?

In general, this sum is 360° for any convex polygon.



STEP 1 Shade one exterior angle at each vertex.

STEP 2 Cut out the exterior angles.



STEP 3 Arrange the exterior angles to form 360°.

THEOREM

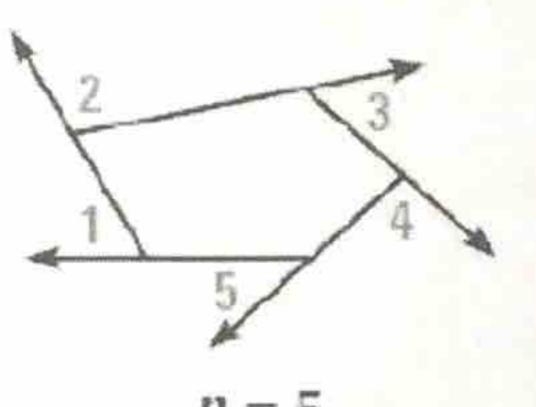
For Your Notebook

THEOREM 8.2 Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

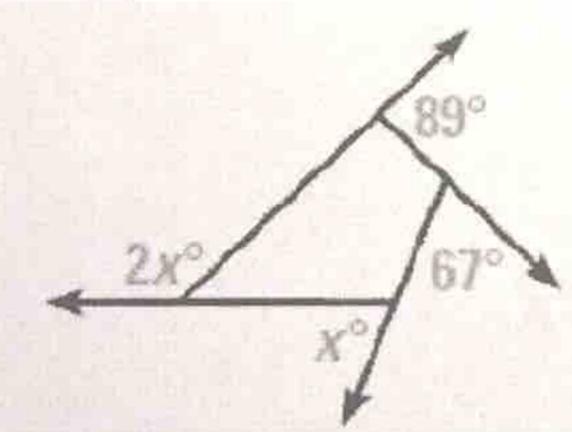
$$m\angle 1 + m\angle 2 + \cdots + m\angle n = 360^{\circ}$$

Proof: Ex. 35, p. 512



n = 5

Ex 4: What is the value of x in the diagram?



$$2x + 89 + 67 + x = 360$$

 $3x + 156 = 360$
 $3x = 204$
 $x = 68$

Ex 5: A stop sign is shaped like a regular octagon. Find the measure of each interior angle and the measure of each exterior angle.

interior
$$25$$
:
 $(n-2) \cdot 180^{\circ}$
 $(8-2) \cdot 180^{\circ}$
 $(6) \cdot 180^{\circ}$
 10.80°
 $825 = 1080^{\circ}$