7.4 Special Right Triangles

THEOREM

For Your Notebook

THEOREM 7.8 45°-45°-90° Triangle Theorem

In a 45°-45°-90° triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.

hypotenuse = $leg \cdot \sqrt{2}$

Proof: Ex. 30, p. 463

Find the length of the hypotenuse.

Ex 1:

CXZ

By Theorem 7.8,

By Base Angles Theorem and Corollary to Δ sum theorem, this is a $45^{\circ}-45^{\circ}-90^{\circ}$ Δ

hypotenuse =
$$leg \cdot \sqrt{2}$$

= $3\sqrt{2} \cdot \sqrt{2}$
= $3(2)$
= $lo units$

Find the lengths of the legs in the triangle.

Ex 3:

By Base Angles Theorem & Corollary to Δ Sum Theorem, this is a 45°-45°-90° Δ

hypotenuse =
$$leg \cdot \sqrt{2}$$

 $5\sqrt{2} = x \cdot \sqrt{2}$
 $x = 5\sqrt{2}$
 $x = 5$ units

THEOREM

For Your Notebook

THEOREM 7.9 30°-60°-90° Triangle Theorem

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

hypotenuse = 2 • shorter leg

longer leg = shorter leg • $\sqrt{3}$

Proof: Ex. 32, p. 463

Ex 4: Find the values of x and y. Write the answer in simplest radical form.

$$X = 3\sqrt{3}$$
 units

hypotenuse = 2 · shorter leg

Y= 2-353

4 = 653 units Find the value of the variable.

Ex 5:

Equilateral A so every $L = 60^{\circ}$

Imager leg = shorter leg - 13 h = 253 units