# 6.6 Use Proportionality Theorems

#### THEOREMS

For Your Notebook

### **THEOREM 6.4** Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.



Proof: Ex. 22, p. 402

If 
$$\overline{TU} \parallel \overline{QS}$$
, then  $\frac{RT}{TQ} = \frac{RU}{US}$ 

### **THEOREM 6.5 Converse of the Triangle Proportionality Theorem**

If a line divides two sides of a triangle proportionally, then it is parallel to the third side.



Proof: Ex. 26, p. 402

If 
$$\frac{RT}{TO} = \frac{RU}{US}$$
, then  $\overline{TU} \parallel \overline{QS}$ .

<u>Ex 1</u>: In the diagram,  $\overline{QS} \parallel \overline{UT}$ , RS = 4, ST = 6, and QU = 9. What is the length of  $\overline{RQ}$ ?

$$\frac{RQ}{QU} = \frac{RS}{ST}$$



<sup>\*</sup> Theorems 6.4 and 6.5 also make it clear that if the lines are <u>not</u> parallel then the proportion is <u>not</u> true.

#### THEOREMS

## For Your Notebook

#### THEOREM 6.6

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Proof: Ex. 23, p. 402



### THEOREM 6.7

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

Proof: Ex. 27, p. 403



Ex 2: In the diagram,  $\angle 1$ ,  $\angle 2$ , and  $\angle 3$  are all congruent and GF = 120 yards, DE = 150 yards, and CD = 300 yards. Find the distance HF between Main

Street and South Main Street.

The distance is 360 yes. H

F = 300  $E \times 3$ : In the diagram,  $\angle QPR \cong \angle RPS$ . Use the given side lengths to find the length of  $\overline{RS}$ .

