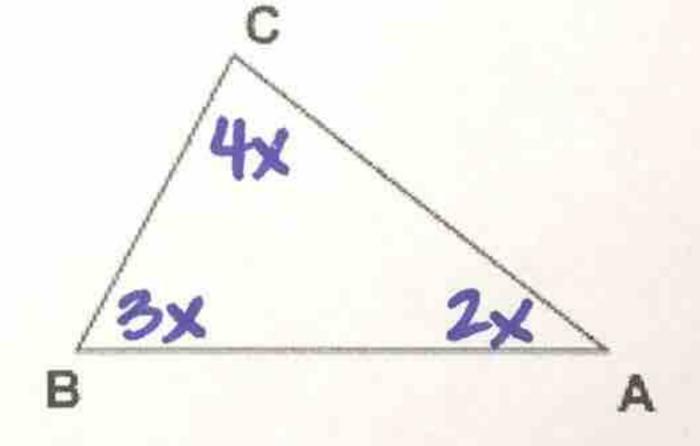
6.1 Ratios, Proportions, and the Geometric Mean

ratio of a to b - a comparison of a and b, which are 2 numbers or quantities and b \neq 0; can be written in one of 3 ways: a:b, a to b, $\frac{a}{b}$

Simplify each ratio.

$$\frac{12 \text{ km}}{3 \text{ km}} = \frac{12 \div 3}{3 \div 3} = \boxed{\frac{4}{1}}$$


$$\boxed{4 \div 1}$$

$$\frac{36 \text{ in'}}{9 \text{ ft}} \times \frac{1 \text{ ft}}{12 \text{ in'}} = \frac{36 \div 36}{108 \div 36} = \boxed{\frac{1}{3}}$$

Useful Conversion Factors: 1 L = 1000 mL, 1 lb = 16 oz, 1 m = 100 cm

Ex 3: The measures of the angles of \triangle ABC are in the extended ratio 2:3:4. Find the measures of the angles.

$$2x + 3x + 4x = 180$$

 $9x = 180$
 $x = 20$

proportion - an equation that states that 2 ratios are equal

means - numbers b and c in a proportion

extremes - numbers a and d in a proportion

extreme
$$\rightarrow a = c \leftarrow mean$$
mean $\rightarrow b = d \leftarrow extreme$

A Property of Proportions

1. Cross Products Property In a proportion, the product of the extremes equals the product of the means.

If
$$\frac{a}{b} = \frac{c}{d}$$
 where $b \neq 0$ and $d \neq 0$, then $ad = bc$.

$$\frac{2}{3} = \frac{4}{6}$$
 $3 \cdot 4 = 12$
 $2 \cdot 6 = 12$

Solve each proportion.

$$\frac{E \times 4}{24}$$
: $\frac{o}{24} = \frac{x}{27}$
 $8(27) = 24(x)$
 $210 = 24x$

Ex 5:
$$\frac{2}{x+3} = \frac{5}{4x}$$

 $2(4x) = 5(x+3)$
 $8x = 5x+15$
 $3x = 15$

KEY CONCEPT

For Your Notebook

Geometric Mean

The **geometric mean** of two positive numbers a and b is the positive number x that satisfies $\frac{a}{x} = \frac{x}{b}$. So, $x^2 = ab$ and $x = \sqrt{ab}$.

Ex 6: Find the geometric mean of 36 and 54.

$$\frac{36}{54} = \frac{4}{54}$$
 $\chi^2 = \frac{36}{36}(54)$
 $\chi^2 = \frac{1944}{1856}$
 $\chi = \frac{1856}{1856}$