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5.4 Use Medians and Altitudes

median of a triangle - a segment from a vertex to the midpoint of the
opposite side S
CENTROID - the point of concurrency of the 3 medians of a triangle, always
inside the triangle, the point where a triangle will balance

THEOREM = " For Your Notebook

THEOREM 5.8 Concurrency of Medians of a Triangle
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The medians of a triangle intersect at a point
that is two thirds of the distance from each
vertex to the midpoint of the opposite side.

- .
r W O 9 Y W B %

The medians of A2 ABC meet at P and
AP = %AE. BP = %BF, and CP = %CD.
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Proof: Ex. 32, p. 323; p. 934

Ex 1: InARST, Q is the centroid and SQ = 8. Find QW and SW.
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6P = 4 urids (down Hom 6
altitude of a triangle - the perpendicular segment from a vertex to the

opposite side or to the line that contains the opposite side

THEOREM s For Your Notebook
- THEOREM 5.9 Concurrency of Altitudes of a Triangle G
-~ The lines containing the altitudes of a triangle D,/ﬂ\'\,f
< are concurrent. TR
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The lines containing AF, BE, and CD meet at G.
Proof: Exs. 29-31, p. 323; p. 936
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Mﬂ isosceles triangle, the perpendicular bisector, angle blfse;-;;m' \\J'JL n,
 and altitude from the vertex angle to the base angle are all the

segment. In an equilateral triangle, this is frue from any vertex.
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Find the coordinates of the centroid P of A ABC with
A( 6, 2) S( 26) T(2, 4)
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The Measures of Center in Triangles:

e Circumcenter - point of concurrency of segment bisectors; inside for
acute As, on the triangle for right As, outside for obtuse As
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