5.2 Graphing Proportional Relationships (Extension)

Graph the values from the ratio table.

Time, x (seconds)	Height, y (meters)
3	2
6	4
9	6
12	8

rate of change =
$$\frac{1}{x}$$

= $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$

We can see that this ratio table has a constant rate of change (this is why the graph is a line).

What if we continued the table?

	Time, x (seconds)	Height, y (meters)
2		0 -2
	3	2
7	6	4
-3 (9	6)-2

^{*}The graph of EVERY proportional relationship makes a LINE that passes through the origin (0, 0) *

Graph to decide whether x and y are in a proportional relationship.

- 1	e	ø	-			
		ď			0.0	1.0
	ľ	3	Ξ	S.	к	6
100	ų	•	-	10	-3	

X	2	4	6	
y	6	8	10	

×	Y
1	2
2	4
3	6

= 2 = 2 = 2 V

- (a) Interpret each plotted point on the graph.
- (b) Is the relationship proportional?
- (c) If it is proportional, what is the unit rate?

Curiosity Rover at Top Speed

$$(3, 4.5) = 35ec, 4.5 in$$

$$(1, 1.5) = 1 \text{ Sec}, 1.5 \text{ in}$$

 $(0, 0) = 0 \text{ Sec}, 0 \text{ in}$

$$(0,0) = 0 sec, 0 in$$

(6) Yes-straight line through the ongin

© unit rate =
$$\frac{4.5}{3} = \frac{1.5}{1} =$$