5.1 Midsegment Theorem

midsegment of a triangle - a segment that contains the midpoints of two

sides of the triangle

THEOREM

For Your Notebook

THEOREM 5.1 Midsegment Theorem

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side.

Proof: Example 5, p. 297; Ex. 41, p. 300

 $\underline{Ex\ 1}$: Triangles are used for strength in roof trusses. In the diagram, \overline{UV} and \overline{VW} are midsegments of $\Delta RST.$ Find UV and RS.

 $\underline{Ex\ 2}$: In the kaleidoscope image, $\overline{AE}\cong \overline{BE}$ and $\overline{AD}\cong \overline{CD}$. Prove that $\overline{CB}\parallel \overline{DE}$.

STATEMENTS

- 1. AE ≅ BE, AD ≅ CD 2. E is midptof TB, D is midpt of AC 3. DE is a midsegment of △ABC
- 4. CB// DE

REASONS

- 1. Given
- 2. Definition of Midsegment 3. Definition of Midsegment 4. Midsegment Theorem

Ex 3: Place each figure in a coordinate plane in a way that is convenient for finding side lengths. Assign coordinates to each vertex.

(a) a rectangle

(b) a scalene triangle

Ex 4: Place an isosceles right triangle in a coordinate plane. Find the length of the hypotenuse and the coordinates of the midpoint.

$$dpa = \int (k-0)^{2} + (0-k)^{2}$$

$$= \int k^{2} + k^{2}$$

$$= \int 2k^{2}$$

$$= V = \sqrt{2}$$