4.7 Use Isosceles and Equilateral Triangles

isosceles triangle - a triangle with at least 2 congruent sides; when there are exactly 2 congruent sides, the 2 sides are called legs, the angle formed by the legs is the vertex angle, the third side is the base, the 2 angles adjacent to the base are called base angles vertex angle

THEOREMS

For Your Notebook

THEOREM 4.7 Base Angles Theorem

If two sides of a triangle are congruent, then the angles opposite them are congruent.

If
$$\overline{AB} \cong \overline{AC}$$
, then $\angle B \cong \angle C$.

Proof: p. 265

THEOREM 4.8 Converse of Base Angles Theorem

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If
$$\angle B \cong \angle C$$
, then $\overline{AB} \cong \overline{AC}$.

Proof: Ex. 45, p. 269

Ex 1: Prove the Base Angles Theorem. GIVEN $\triangleright JK \cong JL$

GIVEN
$$\triangleright JK \cong JL$$

PROVE
$$\triangleright \angle K \cong \angle L$$

STATEMENTS

- 1. Mis the midpoint of KL
- 2. MK = ML
- 3. JK = JL
- 4. JM = JM
- 5. AJMK = AJML
- 6. LKZLL

REASONS

- 1. Definition of midpoint 2. Definition of midpoint

- 3. Given on diagram
 4. Reflexive Property of Congruence
- 5. 555
- 6. CPCTC

COROLLARIES

Corollary to the Base Angles Theorem

If a triangle is equilateral, then it is equiangular.

Corollary to the Converse of Base Angles Theorem

If a triangle is equiangular, then it is equilateral.

Ex 2: Find the measures of $\angle P$, $\angle Q$, $\angle R$.

A Par is equilateral therefore also equiangular by Corollary to Base Angles Theorem

So
$$m \angle P = m \angle Q = m \angle P = x$$

 $x + x + x = 180^{\circ}$
 $3x = 180$

$$m \angle P = 60^{\circ}$$

 $m \angle Q = 60^{\circ}$
 $m \angle R = 60^{\circ}$

Ex 3: Find the values of x and y in the diagram.

AKIN is equiangular therefore K also equilateral.

 Δ LMN is isosceles so $LN \cong LM$ 4 = x + 1 $\boxed{x = 3}$