4.5 Prove Triangles Congruent by ASA and AAS

THEOREMS

For Your Notebook

Postulate 21 Angle-Side-Angle (ASA) Congruence Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If Angle
$$\angle A \cong \angle D$$
,
Side $\overline{AC} \cong \overline{DF}$, and
Angle $\angle C \cong \angle F$,
then $\triangle ABC \cong \triangle DEF$.

THEOREM 4.6 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If Angle
$$\angle A \cong \angle D$$
,

Angle $\angle C \cong \angle F$, and
Side $\overline{BC} \cong \overline{EF}$,

then $\triangle ABC \cong \triangle DEF$.

Proof: Example 2, p. 250

Ex 1: Prove the Angle-Angle-Side Congruence Theorem (NO FLOW PROOFS)

GIVEN
$$\triangleright \angle A \cong \angle D$$
, $\angle C \cong \angle F$, $\overline{BC} \cong \overline{EF}$

PROVE $\triangleright \triangle ABC \cong \triangle DEF$

STATEMENTS

- 1. LAZLD, LCZLF
 BCZEF
- 2. LB= LE
- 3. DABC = DDEF

REASONS

- 1. Given
- 2. Third Angles Theorem
- 3. ASA

In diagram $\overline{CE} \perp \overline{BD}$ and $\angle CAB \cong \angle CAD$. Prove $\triangle ABE \cong \triangle ADE$.

(NO FLOW PROOFS)

STATEMENTS REASONS 1. CELBD, LCAB = LCAD 2. LBAERLCAB are supplements 3. LDAELLCAD are supplements 4. LBAE = LDAE 4. AE = AE 1. Given 2. Definition of supplementary Angles 3. Congruent Supplements Theorem 4. Reflexive Property 5. Definition of Perpendicular Lines 6. All right angles are congruent 5. MLAEB=MLAED=90° (A) 6. LAEB = LAED 7. ASA 7. DABE = DADE

For Your Notebook **CONCEPT SUMMARY**

Triangle Congruence Postulates and Theorems

SSS	SAS	HL (right A only)	ASA	AAS
A C D E F	A = C D = F	A C D E F	A = A = A = A = A = A = A = A = A = A =	A = C D = F
All three sides are congruent.	Two sides and the included angle are congruent.	The hypotenuse and one of the legs are congruent.	Two angles and the included side are congruent.	Two angles and a (non-included) side are congruent.

In the Exercises, you will prove three additional theorems about the congruence of right triangles: Angle-Leg, Leg-Leg, and Hypotenuse-Angle.