4.2 Apply Congruence and Triangles

congruent - when geometric figures have exactly the same size and shape

Same size and shape

Not congruent

Different sizes or shapes

congruent figures - all the parts of one figure are congruent to the corresponding parts of the other figure

 $\underline{Ex 1}$: Identify all pairs of congruent corresponding parts for the triangles shown. Then write a congruence statement for the triangles.

Corresponding Angles: LA = LF

LB=LE

LC=LD

A H

Corresponding Sides:

AB = FE

AC = FD

BC = ED

Congruence Statements: A A BC

DABC = DFED

A ACB = A FDE

DECA = DEDF

Ex 2: In the diagram DEFG \equiv SPQR Find the values of x and y.

THEOREM

For Your Notebook

THEOREM 4.3 Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Proof: Ex. 28, p. 230

If $\angle A \cong \angle D$, and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

Ex 3: Find $m \angle BDC$.

LACD = LBDC (Mird Angles Thm)

45 + 30 + x = 180

X+75 = 180

X = 105

MLACD = MLBDC = 105°

GIVEN $\triangleright AD \cong CB$, $DC \cong BA$, $\angle ACD \cong \angle CAB$, $\angle CAD \cong \angle ACB$

PROVE $\triangleright \triangle ACD = \triangle CAB$

STATEMENTS

- 1. AD = CB, DC = BA LKED = LCAB, LCAD= LACB

- 3. LBZLD 4. AACDZACAB

REASONS

- 1. Given
- 2. Reflexive Property of Congruence
- 3. Third Angles Theorem
 4. Definition of Congruent Figures

THEOREM

For Your Notebook

THEOREM 4.4 Properties of Congruent Triangles

Reflexive Property of Congruent Triangles

For any triangle ABC, $\triangle ABC \cong \triangle ABC$.

Symmetric Property of Congruent Triangles

If $\triangle ABC \cong \triangle DEF$, then $\triangle DEF \cong \triangle ABC$.

Transitive Property of Congruent Triangles

If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle JKL$, then $\triangle ABC \cong \triangle JKL$.

