2.8 Symbolic Notation and Truth Tables

Conditional statements can be written using symbolic notation, where letters are used to represent statements. An arrow (\rightarrow) , read "implies", connects the hypothesis and conclusion. To write the negation of a statement **p** you write the symbol for negation (\sim) before the letter. So, "not **p**" is written \sim p.

KEY CONCEPT

For Your Notebook

Symbolic Notation

Let p be "the angle is a right angle" and let q be "the measure of the angle is 90° ."

Conditional

If p, then q.

 $p \rightarrow q$

Example: If an angle is a right angle, then its measure is 90°.

Converse

If q, then p.

 $q \rightarrow p$

Example: If the measure of an angle is 90°, then the angle is a right angle.

Inverse

If not p, then not q.

 $-p \rightarrow -q$

Example: If an angle is not a right angle, then its measure is not 90°.

Contrapositive

If not q, then not p.

 $\sim q \rightarrow \sim p$

If the measure of an angle is not 90°, then the angle is not a right angle.

Biconditional

p if and only if q

 $p \leftrightarrow q$

Example: An angle is a right angle if and only if its measure is 90°.

truth value - tells whether a statement is either true (T) or false (F), if a hypothesis is true but the conclusion is false then the truth value is FALSE

truth table - shows the truth values for the hypothesis p and the conclusion q

Ex 1: Let p be "the car is running" and q be "the key is in the ignition". State whether each statement is TRUE or FALSE. (no key-less start-up)

- (a) Write the conditional statement $p \rightarrow q$ in words. If the car is running, then the key is in the ignition. \square
- (b) Write the converse q → p in words.

 If the key is in the ignition, then the car is running. [F]
- (c) Write the inverse ~p → ~q in words.

 If the car is not running, then the key is not in the ignition. [F]
- (d) Write the contrapositive $\sim q \rightarrow \sim p$ in words. If the key is not in the ignition, then the car is not running. \square

<u>Ex 2</u>: Complete the truth table with the negations, conditional, converse, inverse, and contrapositive.

		Negation	Negation	Conditional	Converse	Inverse	Contrapositive
p	9	~p	~9	$p \rightarrow q$	$q \rightarrow p$	~p -> ~q	
T	T		F	7		T	T
T	F	F	T	F	T	T	F
F	7		F		F	F	
F	F	T		T	T	T	

Ex 3: Use the statement "If you live in Dos Vientos, then you live in California." Make a table for the converse.

		Converse	Statement
p	9	$q \rightarrow p$	
T	T	F	If you live in California, then you live in Dos Vientos.
T	F	F	If you don't live in California, then you do live in D.V.
F	T	F	If you live in California, then you don't live in D.V.
F	F	T	If you don't live in California, then you don't live in D.V.