Answers for 11.6

For use with pages 765–768

11.6 Skill Practice

1. *F*

- **2.** ∠*AFE*
- **3.** 6.8 units
- **4.** 5.5 units
- **5.** Divide 360° by the number of sides *n* of the polygon.
- **6.** 36°
- **7.** 20°
- **8.** 15°
- **9.** 51.4°
- **10.** 45°
- **11.** 22.5°
- **12.** 67.5°
- **13.** 135°
- 14. about 62.4 square units
- 15. about 289.2 square units
- 16. about 20.9 square units
- 17. 7.5 is not the measure of a side length, it is the measure of the base of the triangle, it needs to be doubled to become the measure of the side length;

$$A \approx \frac{1}{2}(13)(6)(15) =$$

585 square units.

- **18.** B
- **19.** about 122.5 units, about 1131.4 square units
- **20.** about 29.8 units, about 61.1 square units
- 21. 63 units, about 294.3 square units

- 22. Yes; about 24.7 square units; since a nonagon has 9 sides, $18 \div 9$ tells you that each side is 2 units long, and $\frac{360}{9}$ tells you that the measure of the central angle is 40° . A right triangle can be constructed with a base of 1 unit and angle of 20° opposite the base; $\tan 20 = \frac{1}{a}$ allows us to find the apothem and then the area is $\frac{1}{2}(\frac{1}{\tan 20})(18) \approx 24.7$ square units.
- **23.** apothem, side length; special right triangles or trigonometry; 392 square units
- **24.** apothem; Pythagorean Theorem, special right triangles or trigonometry about 259.8 square units
- **25.** side length; Pythagorean Theorem or trigonometry; about 204.9 square units
- 26. about 223.8 square units
- 27. about 79.6 square units
- 28. about 117.9 square units
- 29. about 1.4 square units
- **30.** about 59.4 square units

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

- **31.** True; since the radius is the same, the circle around the n-gons is the same but more and more of the circle is covered the larger n is.
- 32. True; the radius represents the hypotenuse of a right triangle with the apothem as a leg, therefore, the apothem must always be less than the radius.
- **33.** False; the radius can be equal to the side length as it is in a hexagon.

34.
$$A = \frac{1}{2}bh = \frac{1}{2}\left(2 \cdot \frac{s\sqrt{3}}{2}\right)\left(\frac{s}{2}\right) = \frac{s^2\sqrt{3}}{4}$$

$$A = \frac{1}{2}a \cdot ns = \frac{1}{2}\left(\frac{s\sqrt{3}}{6}\right)(3s) = \frac{3s^2\sqrt{3}}{12} = \frac{s^2\sqrt{3}}{4}$$

35. shaded area = area of hexagon area of pentagon + area of square
- area of triangle; 92 square units

11.6 Problem Solving

36. a.
$$4\sqrt{3}$$
 in.

b. 48 in., 166 in.²

37. 1.2 cm, about 4.8 cm²; about 1.6 cm²

- **38.** Predictions may vary.
 - **a.** about132.7 in.²
 - **b.** 135 in.^2
 - **c.** about 139.4 in.²
- **39.** 15.5 in.²; 43.0 in.²
- **40. a.** Check students' work.
 - **b.** about 2.6 in. 2 , about 0.54 in. 2
 - c. Sample answer: Draw \overline{AB} with length 1 in. Open compass to 1 inch and draw a circle with that radius, continue with this setting and mark off equal parts on the circle. Connect 2 consecutive points with the center of the circle.
- 41. $\frac{360}{9} = 60$, so the central angle is 60° . All of the triangles are of the same side length r, and therefore all six triangles have a vertex at the center with central angle 60° and side lengths r.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company

42. Method 1:
$$A = \frac{1}{2}aP = \frac{1}{2}\sqrt{3}(12) = 6\sqrt{3}$$

Method 2: 6(Area of a central triangle) = $6\left(\frac{1}{2}bh\right)$ =

$$6\left(\frac{1}{2} \cdot 2 \cdot \sqrt{3}\right) = 6\sqrt{3};$$

Method 3: $A = \frac{1}{2}a \cdot ns =$

$$\frac{1}{2}(\sqrt{3})(6)(2) = 6\sqrt{3};$$

Method 4: A = 2(Area of

trapezoid) =
$$2\left(\frac{1}{2}h(b_1 + b_2)\right) =$$

$$2\left(\frac{1}{2}\sqrt{3}(4+2)\right) = 6\sqrt{3}.$$

43. Because P is both the incenter and the circumcenter of $\triangle ABC$ and letting E be the midpoint of \overline{AB} , you can show that \overline{BD} and \overline{CE} are both medians of $\triangle ABC$ and they intersect at P. By the Concurrency of Medians of a

> Triangle Theorem, $BP = \frac{2}{3}BD$ and $CP = \frac{2}{3}$ CE. Using algebra, show that 2PD = CP.

44. a. 0.52 cm

- **b.** About 0.2 cm^2 ; a = 0.26 cmand when you construct a right triangle with a as the height and a 30° angle measure between a and the hypotenuse, you can use a tangent ratio to give you the base of the triangle to be 0.15, which means the side of a hexagon is 0.30. So the area of a cell is $\frac{1}{2}(0.26)(6 \cdot 0.3)$, or about 0.23 square centimeters.
- **c.** 23.4 cm^2 ; 0.23 dm^2
- d. Solve the proportion $\frac{1 \text{ cell}}{0.52 \text{ cm}} = \frac{x \text{ cells}}{10 \text{ cm}} \text{ and find that}$ there are about 19.2 cells per decimeter.

Answers for 11.6 continued For use with pages 765–768

- 45. a. About 173.2 cm²; square: about 225 cm², pentagon: about 247.7 cm², hexagon: about 259.9 cm², decagon: about 277cm²; the area is increasing with each larger polygon.
 - **b.** about 286.2 cm², about 286.4 cm²

circle; about 286.5 cm²

46.
$$A =$$

$$r^2 n \left[\tan \left(\frac{180^{\circ}}{n} \right) - \cos \left(\frac{180^{\circ}}{n} \right) \sin \left(\frac{180^{\circ}}{n} \right) \right]$$

11.6 Mixed Review

47.
$$\frac{25}{81}$$

48.
$$\frac{2}{51}$$

49.
$$\frac{1}{2}$$

50.
$$\frac{2}{7}$$

51.
$$\frac{4}{5}$$

parallelogram