11.3 Skill Practice

1. A

 $\triangle ABC \sim \triangle DEF$ tells you that the sides in the same position are proportional. \overline{AB} is proportional to \overline{DE} because the sides are both the hypotenuse of their respective triangles and are listed in the same order in the similarity statement.

- 2. No; the ratio of perimeters is the same as the ratio of side lengths, and the ratio of areas is the square of the ratio of sides lengths by Theorem 11.7.
- **3.** 6:11, 36:121
- **4.** 5:9, 5:9, 25:81
- **5.** 1:3, 1:9; 18 ft^2
- **6.** 3:4, 9:16; 135 cm²
- **7.** 7:9, 49:81; about 127 in.²
- **8.** 5:3, 25:9; 14.4 yd^2
- **9.** 7:4
- 10. 4:11
- 11. 11:12

- **12.** C
- 13. 8 cm
- **14.** 15 in.

- **15.** The ratio of areas is 1:4, so the ratio of side lengths is 1:2; ZY = 2(12) = 24.
- **16.** about 1350 cm²
- **17.** 175 ft²; 10 ft, 5.6 ft
- 18. Case 3, Case 1, Case 2; in Case 3 the enlargement is $\sqrt{5}$ which is about 2.24, which is less than an enlargement of 3 in Case 1 which is less than an enlargement of 4 in Case 2.
- **19.** Never; doubling the side length of a square always quadruples the area.
- **20.** Sometimes; only when the octagons are also congruent will the perimeters be the same.
- 21. The triangles are similar since the ratio of the sides of $\triangle ABC$ to $\triangle DEF$ is 3:4. So, the ratio of the area must be 9:16. Use this ratio with the area of $\triangle ABC$ to find the area of $\triangle DEF$.
- 22. 4:1
- **23.** AA Similarity Postulate; $\frac{10}{35} = \frac{2}{7}$ is the ratio of side lengths, so the ratio of areas is 4:49.

- **24.** YUWX is a square, so $\overline{YX} \parallel \overline{UW}$; therefore $\angle YTU \cong \angle WUV$. $\overline{UW} \perp \overline{XV}$, so $\angle UWV$ is 90°; so the AA Similarity Postulate states that $\triangle VTU \sim \triangle WUV$. In $\triangle UVW$, the side opposite the 30° angle is given as $\sqrt{3}$. In $\triangle TUY$, \overline{YU} is $\sqrt{3}$, so by the properties of 30°-60°-90° triangles, the side opposite the 30° angle is 1. So the ratio of side lengths is 1: $\sqrt{3}$, which makes the ratio of the areas 1:3
- **25. a.** 6, 9, 5.4, 9.6; the ratio of areas is 9:25, so the ratio of side lengths is 3:5. Since we are given that CG = 10, then the side ratio tells us that AG = 6, and we are given that GE = 15, so GB = 9. We can also show that $\triangle AGF \sim \triangle CGB$ by the AA Similarity Postulate and has a side ratio of 6:10, so GF = 5.4. Since \overline{GF} is on \overline{GE} , 15 - 5.4 = 9.6 is the length of \overline{FE} .
 - **b.** Sample answer: 1:1, 72:72, for $\triangle ABC$ which is congruent to $\triangle CDA$

11.3 Problem Solving

26. $8\frac{1}{3}$ ft² **27.** 15 ft **28.** B

- 29. a, b. Check students' work.
 - **b.** The area of the smaller triangle is one-fourth the area of the larger triangle.
- 30. Check students' work. The results should be side ratio a:b and area ratio $a^2:b^2$.
- 31. There were twice as many mysteries read, but the area of the mystery bar is about 4 times the area of the science fiction bar, giving the impression that 4 times as many mysteries were read.

Books Read Recently

$$3:\sqrt{6}=\sqrt{6}:2$$

- **33. a.** $\triangle ACD \sim \triangle AEB$, $\triangle BCF \sim \triangle DEF$; AA Similarity Postulate
 - **b.** *Sample answer*: 100:81

c.
$$\frac{10}{9} = \frac{20}{10 + x}$$

$$180 = 100 + 10x$$

$$x = 8$$
or
$$20(9) = (10 + x)(10)$$

$$180 = 100 + 10x$$

$$x = 8$$

- **34. a.** M and N are vertices of the cube, and therefore $\overline{MP} \cong \overline{NP}$ and forms a right angle by the definition of a cube. Also since $\overline{JL} \cong \overline{KL}$ and all angles with vertices at L measure 90°, you have SAS Similarity.
 - **b.** 1:18
 - **c.** 1:17

11.3 Mixed Review

- **35.** 12.56 cm **36.** 31.40 ft
- **37.** 15.70 yd **38.** 19.47 m
- **39.** 20 **40.** 170 **41.** 46

11.1–11.3 Mixed Review of Problem Solving

- 1. a. The four edges represents the hypotenuses of triangles with the same side lengths.
 - **b.** 142.5 ft^2 , 71.25 ft^2
 - **c.** about \$49.88

The formula for the area of a triangle is $A = \frac{1}{2}bh$. As long as h = 8 and the area is 48, the base of the triangle can be 12 meters and shaped in various ways to create different triangles. For the parallelograms, a rectangle that is 8 meters by 6 meters has an area of 48 square meters; show two differently shaped parallelograms with base 6 meters and height 8 meters.

- **3. a.** 252 small tiles, 112 large tiles
 - **b.** \$252, \$378; large tiles
 - c. The ratio of side lengths is 2:3, the ratios of areas is 4:9, and the ratio of costs is 2:3; side length; the ratio of cost is 2:3 which is the ratio of the side lengths.

- **4.** 4 times larger; 9 times larger; n^2 times larger; the formula for the area of a rhombus is $\frac{1}{2}d_1d_2$, if you multiply each diagonal by the same value n, you get $\frac{1}{2}(nd_1)(nd_2)$ which simplifies to $\frac{1}{2}n^2d_1d_2$.
- **5. a.** 820 ft^2
 - **b.** about 180 ft
 - **c.** about 1386 ft²; about 566 ft²
- **6.** 375 in.;

	3	7	5
	0	0	
0	0	0	0
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
3	(5)	(5)	(5)
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

- 7. a. 10 units; since $\triangle EFH$ is a right isosceles triangle with side length $EF = 5\sqrt{2}$, then \overline{EH} must also measure $5\sqrt{2}$. Therefore the Pythagorean Theorem gives FH = 10.
 - **b.** $5 + 5\sqrt{3}$; in $\triangle FJG$, FG = 10 because it is an equilateral triangle. Using the properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles and $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, EJ = 5 and $JG = 5\sqrt{3}$.
 - c. about 68.3 square units