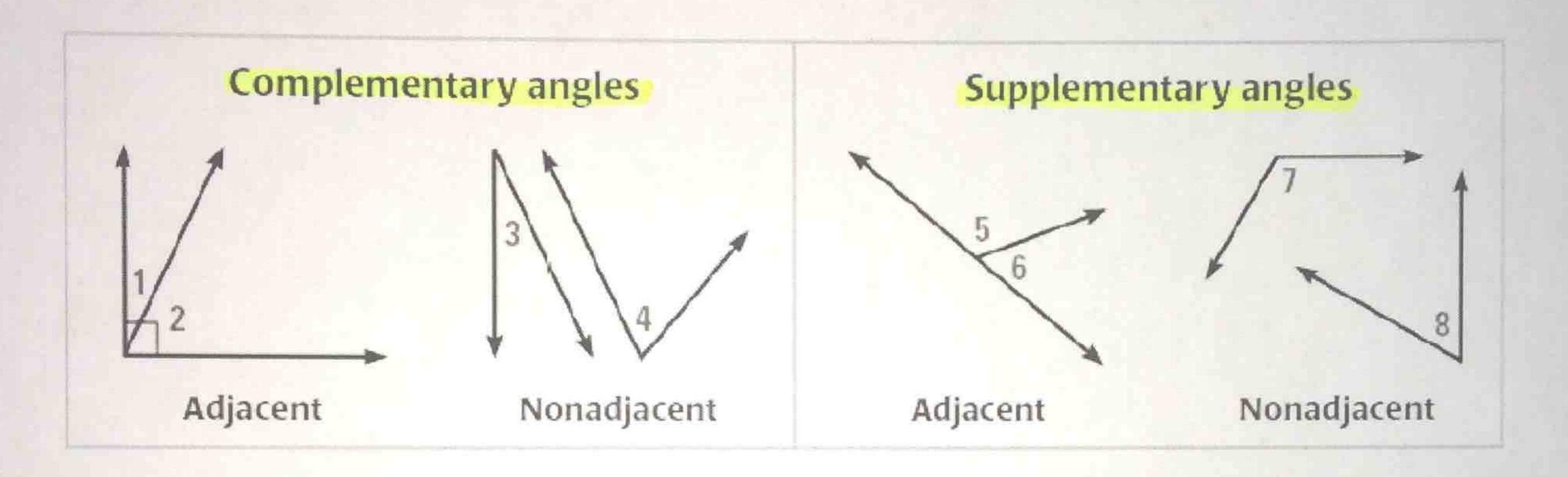
1.5 Describe Angle Pair Relationships

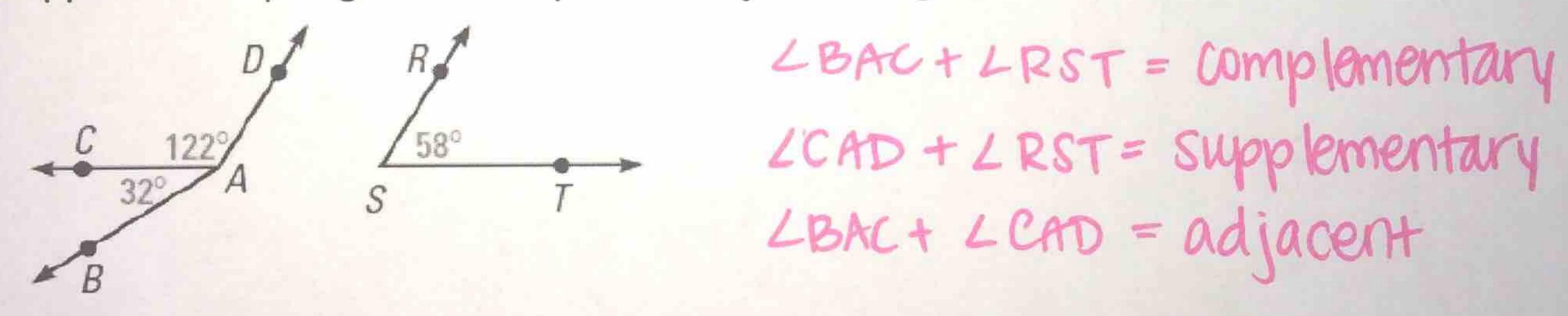
complementary angles - two angles whose sum is 90°

supplementary angles - two angles whose sum is 180°

adjacent angles - two angles that share a common vertex and side, but have no common interior points



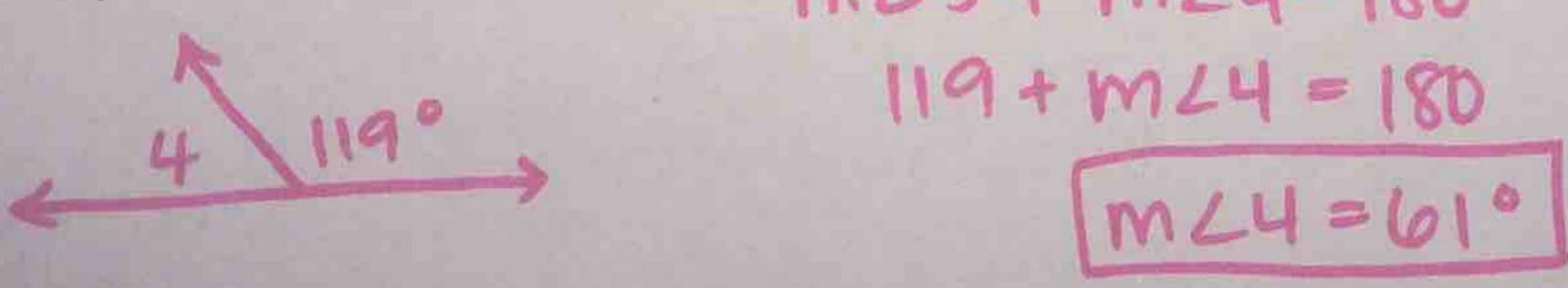
Ex 1: In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.



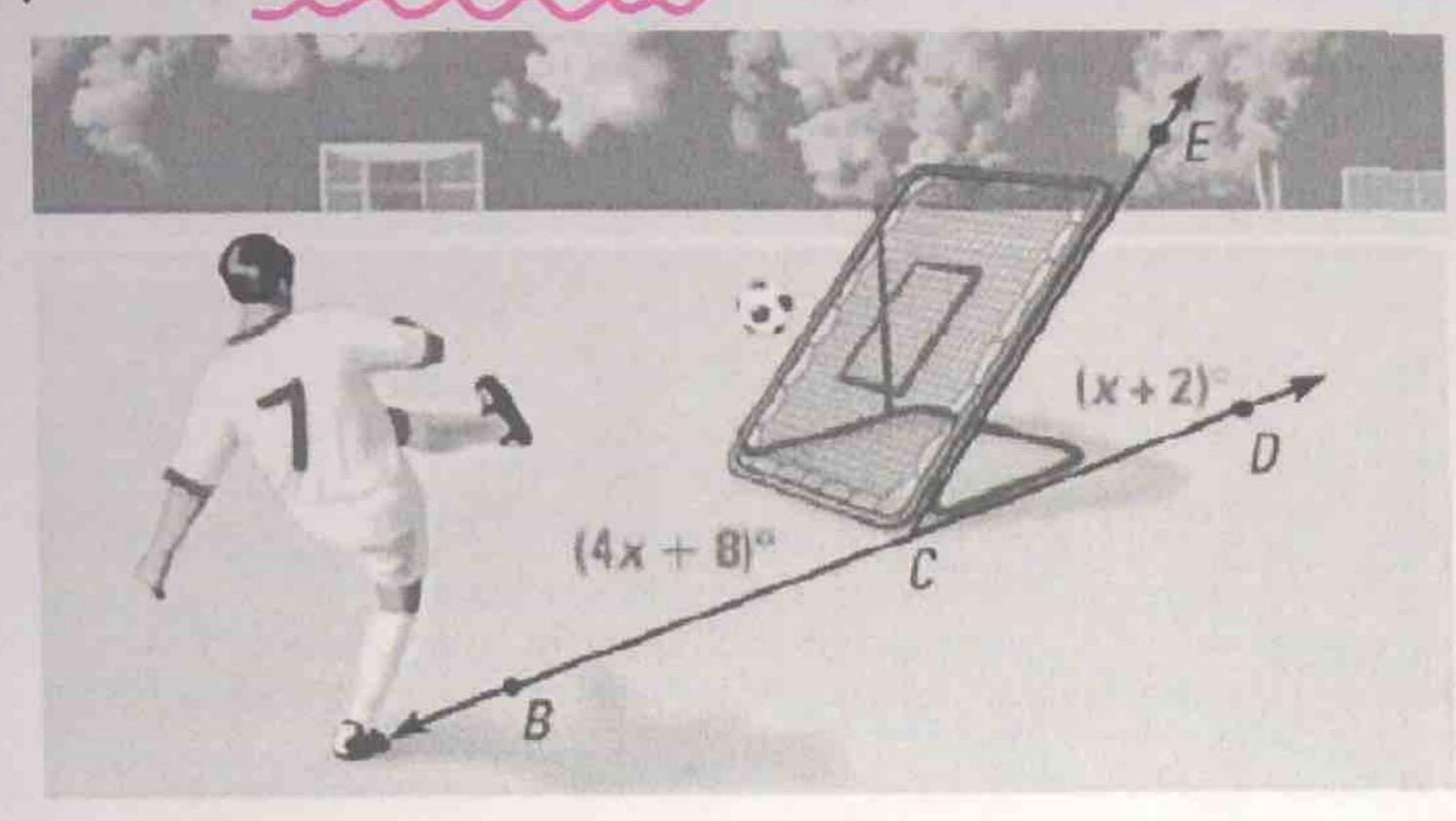
Ex 2: Given that $\angle 1$ is a complement of $\angle 2$ and the m $\angle 1$ = 17°, find m $\angle 2$.

$$\frac{1}{120} = \frac{1}{120} = \frac{1}$$

Ex 3: Given that $\angle 3$ is a supplement of $\angle 4$ and the m $\angle 3$ = 119°, find m $\angle 4$.
ML3+ m $\angle 4$ =180



When viewed from the side, the frame of a ball-return net forms a pair of supplementary angles with the ground. Find m \angle BCE and m \angle ECD.

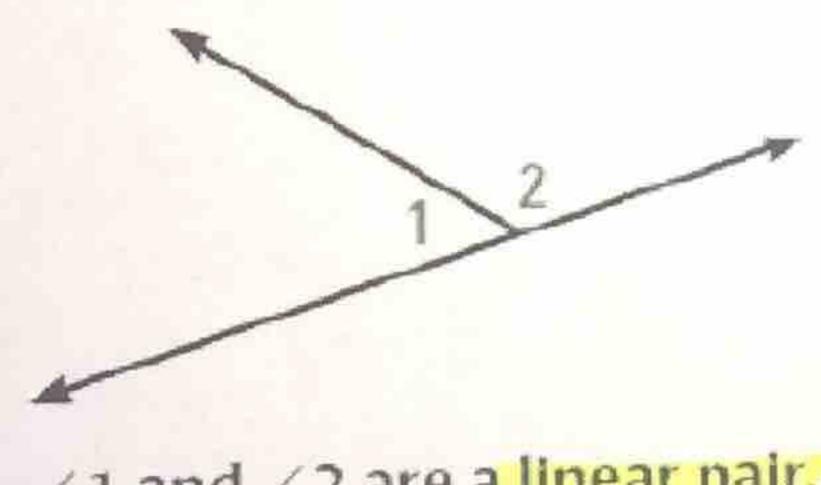


$$(4x+8)+(x+2)=180$$

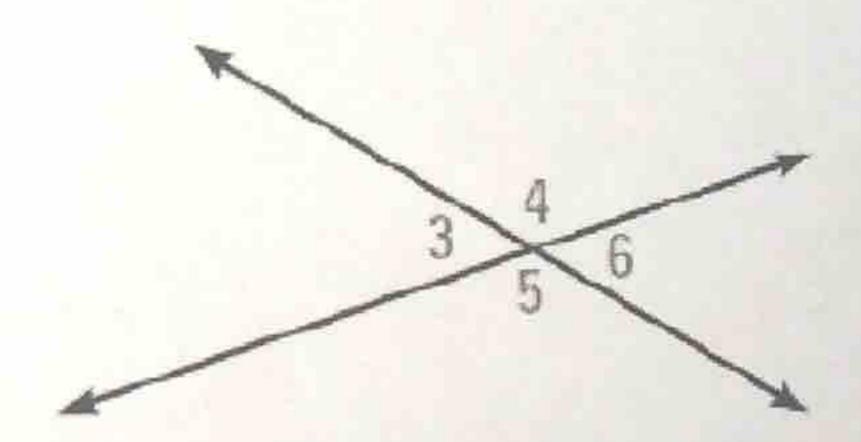
 $5x+10=180$
 $5x=170$
 $x=34$

linear pair - two adjacent angles whose non-common sides are opposite rays (must be exactly TWO angles)

vertical angles - two angles whose sides form two pairs of opposite rays

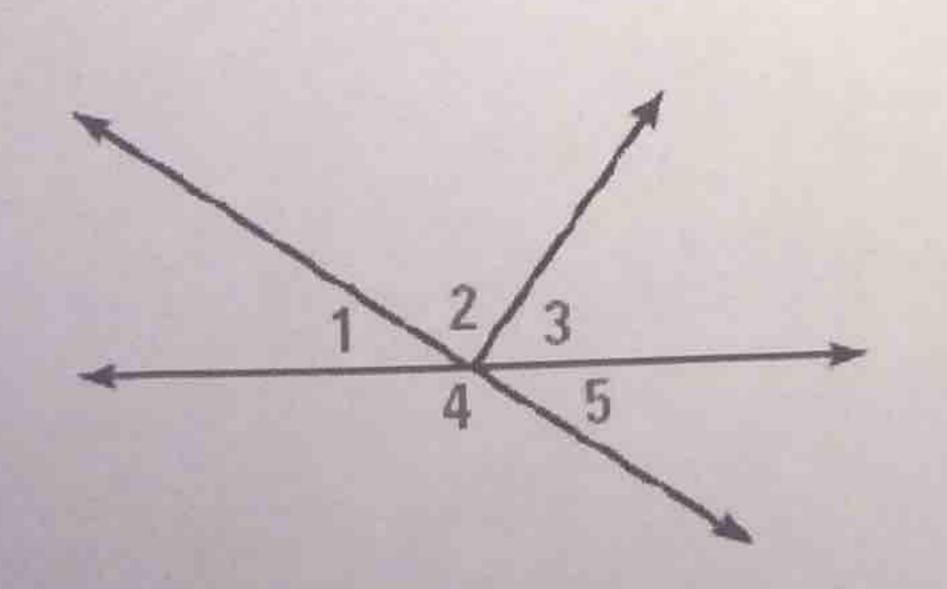


∠1 and ∠2 are a linear pair.



∠3 and ∠6 are vertical angles. ∠4 and ∠5 are vertical angles.

Ex 5: Identify all of the linear pairs and all of the vertical angles in the figure.



41 L 24 linear 44 L L5 linear

21 2 L5 Vertical

Ex 6: Two angles form a linear pair. The measure of one angle is 3 times the measure of the other angle. Find the measure of each angle.

$$X + 3X = 180$$

$$4X = 180$$

$$X = 45^{\circ}$$

$$3X = 3(46)$$

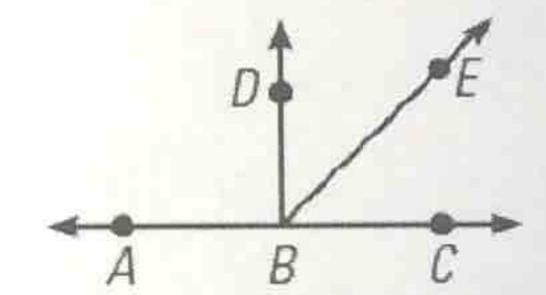
$$3X = 125^{\circ}$$

CONCEPT SUMMARY

For Your Notebook

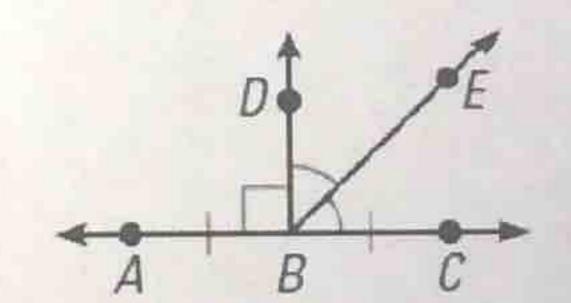
Interpreting a Diagram

There are some things you can conclude from a diagram, and some you cannot. For example, here are some things that you can conclude from the diagram at the right:



- All points shown are coplanar.
- Points A, B, and C are collinear, and B is between A and C.
- \overrightarrow{AC} , \overrightarrow{BD} , and \overrightarrow{BE} intersect at point B.
- ∠DBE and ∠EBC are adjacent angles, and ∠ABC is a straight angle.
- Point E lies in the interior of $\angle DBC$.

In the diagram above, you *cannot* conclude that $\overline{AB} \cong \overline{BC}$, that $\angle DBE \cong \angle EBC$, or that $\angle ABD$ is a right angle. This information must be indicated, as shown at the right.



Moral of the story: DO NOT ASSUME!